990 resultados para phase-coupled modes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper is shown the development of a transmission line, based on discrete circuit elements that provide responses directly in the time domain and phase. This model is valid for ideally transposed rows represent the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal field. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the field lines modal.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into quasi-modes a, b and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.
Resumo:
The recent discovery of a ferroelectric monoclinic phase in the PbZr1-xTixO3 (PZT) system attained the attention of several researchers due to the possibility of understanding the relationships between structural features and piezoelectric properties. The nature of the monoclinic phase in some PZT compositions remains controversial and unclear. In this work, structural phase transitions of PbZr0.52Ti0.48O3 ceramic were investigated by infrared spectroscopy as a function of temperature. Studies were centered on nu(1)-stretching modes and corresponding half width Wi as a function of temperature. The occurrence of the anomalies in the infrared spectra as a function of temperature suggests the following monoclinic ( LT) -> monoclinic ( HT) -> tetragonal phase transition were observed at 183 K and at 263 K.
Resumo:
Recently, the observation of a new monoclinic phase in the PbZr1-xTixO3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm(-1). The four possible nu(1)-stretching modes (Ti-O and Zr-O stretch) in the BO6 octahedron in the ABO(3) structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode nu(1)-(Zr-O) remains practically unaltered, while both intermediate nu(1)-(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency nu(1)-(Ti-O) and nu(1)-(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics.
Resumo:
The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.
Resumo:
Coupled intersubband plasmon-phonon modes are studied in a multisubband parabolic quantum wire at room temperatures. These modes are found by calculating the spectral weight function which is related to the inelastic Raman spectra. We use a 13 subband model. The plasmon-phonon coupling strongly modifies the dispersion relation of the intersubband modes in the vicinity of the optical phonon frequency omega(LO). Extra modes show up as a result of the electron-phonon interaction. We carefully study the density and temperature dependence of these extra modes. We also show that coupled intersubband plasmon-phonon modes should be observed for temperatures as high as 300 K.
Resumo:
We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (d(x2-y2) + is)-wave Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature T-c, a less ordered superconducting phase is created in d(x2-y2) wave, which changes to a more ordered phase in (d(x2-y2) + is) wave at T-c1. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at T-c and T-c1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below T-c1 and confirm the new phase transition. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We discuss the Dirac method analysis of two-dimensional induced gravity, coupled to bosonic matter fields, in reduced phase-space. After defining the extended Hamiltonian it is possible to fix the gauge completely. The Dirac brackets can all be obtained in closed form; nevertheless, the results are not particularly simple.
Resumo:
Polycrystalline Pb-0.Sr-60(0).40TiO3 thin films with the tetragonal perovskite structure were grown on platinum-coated silicon substrates by a chemical method. Raman results reveal that A1 (1 TO) symmetry modes, also known as soft modes, persist above the phase transition 14 temperature. This is due to the high structural distortion caused by the substitution effect of Sr2+ for Pb2+ ions. In contrast, the E(1TO) symmetry mode vanishes at 498 K, characterizing the ferroelectric-paraelectric transition phase. However, the Raman spectra, as a function of temperature, reveal that the ferroelectric-paraelectric phase transition may be correlated with a diffuse phase transition. The experimental data obtained from measurements of the dielectric constant as a function of temperature and frequencies showed a classical behavior of ferroelectric phase transition in Pb-0.Sr-60(0).40TiO3 thin films, rather than a relaxor ferroelectric phase transition. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The present paper describes the use of sugar cane bagasse as solid phase extractor for cadmium determination after complexation of the analyte with ammonium diethyldithiophosphate (ADDP) and sorption of the Cd-DDP complexes on the solid support. The concomitants were separated using a flow injection analysis (FIA) system coupled to flame atomic absorption spectrometry (FAAS) for determination. The main parameters such as ADDP concentration, acid medium, flow rate, reaction coil length, and reaction time were investigated.The results obtained with HNO3 showed good accuracy and precision. The enhancement factor was 20.5 times for a 120-second preconcentration time, and the analytical frequency was 25 determinations per hour. The calibration curve was linear over the concentration range of 1-40 mu g L-1 Cd with a LOD of 0.697 mu g L-1 Cd and a relative standard deviation of 0.96% after 12 successive measurements of 30 mu g L-1 Cd.The proposed method was evaluated for the FIA-FAAS analysis of certified reference materials (tomato leaves, spinach leaves, and bovine liver) and Cd-spiked foods (shrimp, sardine, tuna, chicken liver and bovine liver). Good recoveries (80.0-97.1%) for the Cd-spiked samples and certified reference materials were obtained. The results of bagasse-packed minicolumns were compared with Si-C,8 packed minicolumns. The F-test was applied between Si-C-18/Bagasse minicolumns, Si-C-18/certified values, and bagasse/certified values. It was found that the results were in agreement with the certified values at a 95% confidence level.
Resumo:
We have carried out dielectric and Raman spectroscopy studies at the 298-623 K temperature range in polycrystalline Pb0.70Sr0.30TiO3 thin films grown by a soft chemical method. The diffuse phase-transition behavior of the thin films was observed by means of the dielectric constant versus temperature curves, which show a broad peak. Such behavior was confirmed later by Raman spectroscopy measurements up to 823 K, indicating that a diffuselike phase transition takes place at around 548-573 K. The damping factor of the E(1TO) soft mode was calculated using the damped simple harmonic oscillator model. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the microscopic local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands at some temperature interval above the ferroelectric-paraelectric phase-transition temperature suggested a diffuse nature of the phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in this thin film. (C) 2004 American Institute of Physics.