903 resultados para patient-specific finite element model
Resumo:
Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.
Resumo:
The analysis of Komendant's design of the Kimbell Art Museum was carried out in order to determine the effectiveness of the ring beams, edge beams and prestressing in the shells of the roof system. Finite element analysis was not available to Komendant or other engineers of the time to aid them in the design and analysis. Thus, the use of this tool helped to form a new perspective on the Kimbell Art Museum and analyze the engineer's work. In order to carry out the finite element analysis of Kimbell Art Museum, ADINA finite element analysis software was utilized. Eight finite element models (FEM-1 through FEM-8) of increasing complexity were created. The results of the most realistic model, FEM-8, which included ring beams, edge beams and prestressing, were compared to Komendant's calculations. The maximum deflection at the crown of the mid-span surface of -0.1739 in. in FEM-8 was found to be larger than Komendant's deflection in the design documents before the loss in prestressing force (-0.152 in.) but smaller than his prediction after the loss in prestressing force (-0.3814 in.). Komendant predicted a larger longitudinal stress of -903 psi at the crown (vs. -797 psi in FEM-8) and 37 psi at the edge (vs. -347 psi in FEM-8). Considering the strength of concrete of 5000 psi, the difference in results is not significant. From the analysis it was determined that both FEM-5, which included prestressing and fixed rings, and FEM-8 can be successfully and effectively implemented in practice. Prestressing was used in both models and thus served as the main contribution to efficiency. FEM-5 showed that ring and edge beams can be avoided, however an architect might find them more aesthetically appropriate than rigid walls.
Resumo:
The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety
Resumo:
Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena.
Resumo:
Finite element tire modeling can be a challenging process, due to the overall complexities within the tire and the many variables that are required to produce capable predictive simulations. Utilizing tools from Abaqus finite element software, adequate predictive simulations that represent actual operational conditions can be made possible. Many variables that result from complex geometries and materials, multiple loading conditions, and surface contact can be incorporated into modeling simulations. This thesis outlines modeling practices used to conduct analysis on specific tire variants of the STL3 series OTR tire line, produced by Titan Tire. Finite element models were created to represent an inflated tire and rim assembly, supporting a 30,000 lb load while resting on a flat surface. Simulations were conducted with reinforcement belt cords at variable angles in order to understand how belt cord arrangement affects tire components and stiffness response.
Resumo:
Scaphoid is one of the 8 carpal bones found adjacent to the thumb supported proximally by Radius bone. During the free fall, on outstretched hand, the impact load gets transferred to the scaphoid at its free anterior end. Unique arrangement of other carpal bones in the palm is also one of the reasons for the load to get transferred to scaphoid. About half of the total load acting upon carpal bone gets transferred to scaphoid at its distal pole. There are about 10 to 12 clinically observed fracture pattern in the scaphoid due to free fall. The aim of the study is to determine the orientation of the load, magnitude of the load and the corresponding fracture pattern. This study includes both static and dynamic finite element models validated by experiments. The scaphoid model has been prepared from CT scans of a 27 year old person. The 2D slices of the CT scans have been converted to 3D model by using MIMICS software. There are four cases of loading studied which are considered to occur clinically more frequently. In case (i) the load is applied at the posterior end at distal pole whereas in case (ii), (iii) and (iv), the load is applied at anterior end at different directions. The model is given a fixed boundary condition at the region which is supported by Radius bone during the impact. Same loading and boundary conditions have been used in both static and dynamic explicit finite element analysis. The site of fracture initiation and path of fracture propagation have been identified by using max principal stress / gradient and max principal strain / gradient criterion respectively in static and dynamic explicit finite element analysis. Static and dynamic impact experiments were performed on the polyurethane foam specimens to validate the finite element results. Experimental results such as load at fracture, site of fracture initiation and path of fracture propagation have been compared with the results of finite element analysis. Four different types of fracture patterns observed in clinical studies have been identified in this study.
Resumo:
Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.
Resumo:
High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1–L3 and total hip, QCT of L1–L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8–9.0], Tb.BMD L1–L3: 3.95 [1.8–8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29–5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r2=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.
Resumo:
Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.
Resumo:
BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.
Resumo:
Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.
Resumo:
Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of hip dysplasia. The aim of PAO is to increase acetabular coverage of the femoral head and to reduce contact pressures by reorienting the acetabulum fragment after PAO. The success of PAO significantly depends on the surgeon’s experience. Previously, we have developed a computer-assisted planning and navigation system for PAO, which allows for not only quantifying the 3D hip morphology for a computer-assisted diagnosis of hip dysplasia but also a virtual PAO surgical planning and simulation. In this paper, based on this previously developed PAO planning and navigation system, we developed a 3D finite element (FE) model to investigate the optimal acetabulum reorientation after PAO. Our experimental results showed that an optimal position of the acetabulum can be achieved that maximizes contact area and at the same time minimizes peak contact pressure in pelvic and femoral cartilages. In conclusion, our computer-assisted planning and navigation system with FE modeling can be a promising tool to determine the optimal PAO planning strategy.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
Corrosion of a reinforcement bar leads to expansive pressure on the surrounding concrete that provokes internal cracking and, eventually, spalling and delamination. Here, an embedded cohesive crack 2D finite element is applied for simulating the cracking process. In addition, four simplified analytical models are introduced for comparative purposes. Under some assumptions about rust properties, corrosion rate, and particularly, the accommodation of oxide products within the open cracks generated in the process, the proposed FE model is able to estimate time to surface cracking quite accurately. Moreover, emerging cracking patterns are in reasonably good agreement with expectations. As a practical case, a prototype application of the model to an actual bridge deck is reported.