804 resultados para parallel linkage robot
Resumo:
Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.
Resumo:
[Excerpt] The 11th RoboCup International Symposium was held during July 9–10, 2007 at the Fox Theatre in Atlanta, GA, immediately after the 2007 Soccer, Rescue and Junior Competitions. The RoboCup community has observed an increasing interest from other communities over the past few years, e.g., the robotics community.RoboCupisseenasasignificantapproachtotheevaluationofnewlydeveloped methods to many difficult problems in robotics. Atlanta was also the location of a RoboCup@Space demonstration, which reflected the role of AI and robotics in space exploration. Prior to the symposium, space agencies had expressed an interest in cooperating with RoboCup. A first step in this direction was a successful demonstration at RoboCup 2007, which was accompanied with aninvitedtalkgivenbyaleadingscientistfromtheJapanAerospaceExploration Agency JAXA. [...]
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores
Resumo:
The Closest Vector Problem (CVP) and the Shortest Vector Problem (SVP) are prime problems in lattice-based cryptanalysis, since they underpin the security of many lattice-based cryptosystems. Despite the importance of these problems, there are only a few CVP-solvers publicly available, and their scalability was never studied. This paper presents a scalable implementation of an enumeration-based CVP-solver for multi-cores, which can be easily adapted to solve the SVP. In particular, it achieves super-linear speedups in some instances on up to 8 cores and almost linear speedups on 16 cores when solving the CVP on a 50-dimensional lattice. Our results show that enumeration-based CVP-solvers can be parallelized as effectively as enumeration-based solvers for the SVP, based on a comparison with a state of the art SVP-solver. In addition, we show that we can optimize the SVP variant of our solver in such a way that it becomes 35%-60% faster than the fastest enumeration-based SVP-solver to date.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.
Resumo:
"A workshop within the 19th International Conference on Applications and Theory of Petri Nets - ICATPN’1998"
Resumo:
3
Resumo:
2
Resumo:
1
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2012
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Nowadays a huge attention of the academia and research teams is attracted to the potential of the usage of the 60 GHz frequency band in the wireless communications. The use of the 60GHz frequency band offers great possibilities for wide variety of applications that are yet to be implemented. These applications also imply huge implementation challenges. Such example is building a high data rate transceiver which at the same time would have very low power consumption. In this paper we present a prototype of Single Carrier -SC transceiver system, illustrating a brief overview of the baseband design, emphasizing the most important decisions that need to be done. A brief overview of the possible approaches when implementing the equalizer, as the most complex module in the SC transceiver, is also presented. The main focus of this paper is to suggest a parallel architecture for the receiver in a Single Carrier communication system. This would provide higher data rates that the communication system canachieve, for a price of higher power consumption. The suggested architecture of such receiver is illustrated in this paper,giving the results of its implementation in comparison with its corresponding serial implementation.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014