991 resultados para parallel architecture
Resumo:
In the last years there has been a huge growth and consolidation of the Data Mining field. Some efforts are being done that seek the establishment of standards in the area. Included on these efforts there can be enumerated SEMMA and CRISP-DM. Both grow as industrial standards and define a set of sequential steps that pretends to guide the implementation of data mining applications. The question of the existence of substantial differences between them and the traditional KDD process arose. In this paper, is pretended to establish a parallel between these and the KDD process as well as an understanding of the similarities between them.
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
A new high throughput and scalable architecture for unified transform coding in H.264/AVC is proposed in this paper. Such flexible structure is capable of computing all the 4x4 and 2x2 transforms for Ultra High Definition Video (UHDV) applications (4320x7680@ 30fps) in real-time and with low hardware cost. These significantly high performance levels were proven with the implementation of several different configurations of the proposed structure using both FPGA and ASIC 90 nm technologies. In addition, such experimental evaluation also demonstrated the high area efficiency of theproposed architecture, which in terms of Data Throughput per Unit of Area (DTUA) is at least 1.5 times more efficient than its more prominent related designs(1).
Resumo:
This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.
Resumo:
This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
Conferência: IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors (ASAP)- Jun 05-07, 2013
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
The Robuter is a robotic mobile platform that is located in the “Hands-On” Laboratory of the IPP-Hurray! Research Group, at the School of Engineering of the Polytechnic Institute of Porto. Recently, the Robuter was subject of an upgrading process addressing two essential areas: the Hardware Architecture and the Software Architecture. This upgrade in process was triggered due to technical problems on-board of the robot and also to the fact that the hardware/software architecture has become obsolete. This Technical Report overviews the most important aspects of the new Hardware and Software Architectures of the Robuter. This document also presents a first approach on the first steps towards the use of the Robuter platform, and provides some hints on future work that may be carried out using this mobile platform.
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.
Resumo:
This paper presents an architecture (Multi-μ) being implemented to study and develop software based fault tolerant mechanisms for Real-Time Systems, using the Ada language (Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault tolerance are presented and mechanisms to achieve fault tolerance by software active replication in Ada 95 are discussed. The Multi-μ architecture, based on a specifically proposed Fault Tolerance Manager (FTManager), is then described. Finally, some considerations are made about the work being done and essential future developments.
Resumo:
This paper proposes a global multiprocessor scheduling algorithm for the Linux kernel that combines the global EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed on more than one processor at a given time instant. We state that some priority inversion may actually be acceptable, provided it helps reduce contention, communication, synchronisation and coordination between parallel threads, while still guaranteeing the expected system’s predictability. Experimental results demonstrate the low scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.
Resumo:
Dynamic parallel scheduling using work-stealing has gained popularity in academia and industry for its good performance, ease of implementation and theoretical bounds on space and time. Cores treat their own double-ended queues (deques) as a stack, pushing and popping threads from the bottom, but treat the deque of another randomly selected busy core as a queue, stealing threads only from the top, whenever they are idle. However, this standard approach cannot be directly applied to real-time systems, where the importance of parallelising tasks is increasing due to the limitations of multiprocessor scheduling theory regarding parallelism. Using one deque per core is obviously a source of priority inversion since high priority tasks may eventually be enqueued after lower priority tasks, possibly leading to deadline misses as in this case the lower priority tasks are the candidates when a stealing operation occurs. Our proposal is to replace the single non-priority deque of work-stealing with ordered per-processor priority deques of ready threads. The scheduling algorithm starts with a single deque per-core, but unlike traditional work-stealing, the total number of deques in the system may now exceed the number of processors. Instead of stealing randomly, cores steal from the highest priority deque.