923 resultados para pancreatic beta-cells
Resumo:
Radiolabeled somatostatin analogues have been successfully used for targeted radiotherapy and for imaging of somatostatin receptor (sst1-5)-positive tumors. Nevertheless, these analogues are subject to improving their tumor-to-nontarget ratio to enhance their diagnostic or therapeutic properties, preventing nephrotoxicity. In order to understand the influence of lipophilicity and charge on the pharmacokinetic profile of [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)]-somatostatin-based radioligands such as [DOTA,1-Nal3]-octreotide (DOTA-NOC), different spacers (X) based on 8-amino-3,6-dioxaoctanoic acid (PEG2), 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG4), N-acetyl glucosamine (GlcNAc), triglycine, beta-alanine, aspartic acid, and lysine were introduced between the chelator DOTA and the peptide NOC. All DOTA-X-NOC conjugates were synthesized by Fmoc solid-phase synthesis. The partition coefficient (log D) at pH = 7.4 indicated that higher hydrophilicity than [111In-DOTA]-NOC was achieved with the introduction of the mentioned spacers, except with triglycine and beta-alanine. The high affinity of [InIII-DOTA]-NOC for human sst2 (hsst2) was preserved with the structural modifications, while an overall drop for hsst3 affinity was observed, except in the case of [InIII-DOTA]-beta-Ala-NOC. The new conjugates preserved the good affinity for hsst5, except for [InIII-DOTA]-Asn(GlcNAc)-NOC, which showed decreased affinity. A significant 1.2-fold improvement in the specific internalization rate in AR4-2J rat pancreatic tumor cells (sst2 receptor expression) at 4 h was achieved with the introduction of Asp as a spacer in the parent compound. In sst3-expressing HEK cells, the specific internalization rate at 4 h for [111In-DOTA]-NOC (13.1% +/- 0.3%) was maintained with [111In-DOTA]-beta-Ala-NOC (14.0% +/- 1.8%), but the remaining derivatives showed <2% specific internalization. Biodistribution studies were performed with Lewis rats bearing the AR4-2J rat pancreatic tumor. In comparison to [111In-DOTA]-NOC (2.96% +/- 0.48% IA/g), the specific uptake in the tumor at 4 h p.i. was significantly improved for the 111In-labeled sugar analogue (4.17% +/- 0.46% IA/g), which among all the new derivatives presented the best tumor-to-kidney ratio (1.9).
Resumo:
In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages. When these mice were crossed to Rip1Tag2 mice, VEGF-D-expressing tumors also exhibited peritumoral lymphangiogenesis with lymphocyte accumulations and hemorrhages, and they frequently developed lymph node and lung metastases. Notably, tumor outgrowth and blood microvessel density were significantly reduced in VEGF-D-expressing tumors. Our results demonstrate that VEGF-D induces lymphangiogenesis, promotes metastasis to lymph nodes and lungs, and yet represses hemangiogenesis and tumor outgrowth. Because a comparable transgenic expression of vascular endothelial growth factor-C (VEGF-C) in Rip1Tag2 has been shown previously to provoke lymphangiogenesis and lymph node metastasis in the absence of any distant metastasis, leukocyte infiltration, or angiogenesis-suppressing effects, these results reveal further functional differences between VEGF-D and VEGF-C.
Resumo:
We induced, as a precondition for a pancreas transplant, insulin-dependent diabetes mellitus in 67 Yorkshire Landrace pigs by administering streptozotocin. A dosage of 150 mg/kg body weight gave rise to a long-lasting diabetes mellitus that persisted with time (follow-up period: 26 weeks). Consecutive measurements of serum glucose and plasma insulin, before and up to 30 hours after administering streptozotocin, revealed triphasic behavior: initial hyperglycemia (1st to 3rd hour), pronounced hypoglycemia (12th to 18th hour), then hyperglycemia (22nd hour on). IVGTTs done 1 to 7 days after administering streptozotocin revealed a reduction of the K-value (glucose disappearance rate) from 0.3 (day 2) to 0.07 (day 4). Immunohistochemical studies revealed a complete loss of all beta-cells, concomitantly with a relative increase in glucagon- and somatostatin-positive cells. We also observed a complete loss of pp (pancreatic polypeptide)-positive cells. Diabetes induced by streptozotocin at 150 mg/kg body weight is complete and permanent; our mortality rate was 0%. Given the high morbidity rate after pancreatectomy, streptozotocin should be the method of choice for inducing diabetes mellitus in pigs.
Resumo:
MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression. Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes. To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375). Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion. The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375. Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis. Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes.
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) represents the fourth most common cause of cancer-associated death in the United States. Little progress has been made in understanding how proteotoxic stress affects rapidly proliferating pancreatic tumor cells. Endoplasmic reticulum (ER) stress occurs when protein homeostasis in the ER lumen is perturbed. ER stress activates the unfolded protein response (UPR) to reduce the protein load in the ER. Under conditions of moderate ER stress, the UPR promotes cell cycle arrest which allows time for successful protein load reduction and enables cell survival. However, under conditions of high levels of ER stress the UPR induces cellular apoptosis. In this dissertation, I investigated the role of endoplasmic reticulum (ER) stress and its effects on the cell cycle in pancreatic cancer cells. Activation of the unfolded protein response after ER stress induction was determined by comparing expression of key UPR mediators in non-tumorigenic pancreatic ductal cells to pancreatic cancer cells. Two arms of the UPR were assessed: eIF2α/ATF4/CHOP and IRE1α/XBP1s. Pancreatic cancer cells exhibited altered UPR activation characterized by a delay in both phosphorylation of eIF2α and induction of spliced XBP1. Further evaluation of the UPR-mediated effects on cell cycle progression revealed that pancreatic cancer cells showed a compromised ability to inhibit G1 to S phase progression after ER stress. This reduced ability to arrest proliferation was found to be due to an impaired ability to downregulate cyclin D1, a key gatekeeper of the G1/S checkpoint. Abrogation of cyclin D1 repression was mediated through a slow induction of phosphorylation of eIF2α, a critical mediator of translational attenuation in response to ER stress. In conclusion, pancreatic cancer cells demonstrate a globally compromised ability to regulate the unfolded protein response. This deficiency results in reduced cyclin D1 repression through an eIF2α-mediated mechanism. These findings indicate that pancreatic cancer cells have increased tolerance for elevated ER stress compared to normal cells, and this tolerance results in continued tumor cell proliferation under proteotoxic conditions.
Resumo:
The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.
Resumo:
Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States and the fifth leading cause of cancer-related mortality worldwide. Pancreatic cancer is a big challenge in large due to the lack of early symptoms. In addition, drug resistance is a major obstacle to the success of chemotherapy in pancreatic cancer. The underlying mechanism of drug resistance in human pancreatic cancers is not well understood. Better understanding of the mechanism of molecular pathways in human pancreatic cancers can help to identify the novel therapeutic target candidates, and develop the new preventive and clinic strategies to improve patient survival. We discovered that TAK1 is overexpressed in pancreatic cancer cell lines and patient tumor tissues. We demonstrated that the elevated activity of TAK1 is caused by its binding partner TAB1. Knocking down of TAK1 in pancreatic cancer cells with RNAi technique resulted in cell apoptosis and significantly reduces the size of tumors in mice and made a chemotherapy drug more potent. Targeting the kinase activity of TAK1 with the selective inhibitor LY2610956 strongly synergized in vitro with the antitumor activity of gemcitabine, oxaliplatin, or irinotecan on pancreatic cancer cells. These findings highlighted that TAK1 could be a potential therapeutic target for pancreatic cancer. We also demonstrated that TAK activity is regulated by its binding protein TAB1. We defined a minimum TAB1 sequence which is required and sufficient for TAK1 kinase activity. We created a recombinant TAK1-TAB1 C68 fusion form which has highly kinase activity. This active form could is used for screening TAK1 inhibitors. In addition, several posttranslational modifications were identified in our study. The acetylation of lysine 158 on TAK1 is required for kinase activity. This site is conserved throughout all of kinase. Our findings may reveal a new mechanism by which kinase activity is regulated.
Resumo:
The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.
Resumo:
BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.
Resumo:
Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^
Resumo:
OSW-1 is a natural compound found in the bulbs of Orninithogalum saudersiae, a member of the lily family. This compound exhibits potent antitumor activity in vitro with the IC50 values in the low nanomolar concentration range and demonstrating its ability to kill drug resistant cancer cells. In an effort to discover the unknown mechanism of action of this novel compound as a potential anticancer agent, the main objective of this research project was to test the cytotoxicity of OSW-1 against various cancer lines, and to elucidate the biochemical and molecular mechanism(s) responsible for the anticancer activity of OSW-1. My initial investigation revealed that OSW-1 is effective in killing various cancer cells including pancreatic cancer cells and primary leukemia cells resistant to standard chemotherapeutic agents, and that non-malignant cells were less sensitive to this compound. Further studies revealed that in leukemia cells, OSW-1 causes a significant increase in cytosolic calcium and activates rapid calcium-dependent apoptosis by the intrinsic pathway. Additionally, OSW-1 treatment leads to the degradation of the ER chaperone GRP78/BiP implicated in the survival of cancer cells. Meanwhile, it shows a reduced sensitivity in respiration-deficient sub-clones of leukemia cells which had higher basal levels of Ca2+. Mechanistically, it was further demonstrated that cytosolic Ca2+ elevations were observed together with Na+ decreases in the cytosol, suggesting OSW-1 caused the calcium overload through inhibition of the Na+/Ca 2+exchanger (NCX). Although similar calcium disturbances were observed in pancreatic cancer cells, mechanistic studies revealed that autophagy served as an initial pro-survival mechanism subsequent to OSW-1 treatment but extended autophagy caused inevitable cell death. Furthermore, combination of OSW-1 with autophagy inhibitors significantly enhances the cytotoxicity against pancreatic cancer cells. Taken together, this study revealed the novel mechanism of OSW-1 which is through inhibition of the Na+/Ca2+ exchanger and provides a basis for using this compound in combination with other agents for the treatment of pancreatic cancer which is resistant to available anticancer drugs. ^
Resumo:
The mechanisms underlying cellular response to proteasome inhibitors have not been clearly elucidated in solid tumor models. Evidence suggests that the ability of a cell to manage the amount of proteotoxic stress following proteasome inhibition dictates survival. In this study using the FDA-approved proteasome inhibitor bortezomib (Velcade®) in solid tumor cells, we demonstrated that perhaps the most critical response to proteasome inhibition is repression of global protein synthesis by phosphorylation of the eukaryotic initiation factor 2-α subunit (eIF2α). In a panel of 10 distinct human pancreatic cancer cells, we showed marked heterogeneity in the ability of cancer cells to induce eIF2α phosphorylation upon stress (eIF2α-P); lack of inducible eIF2α-P led to excessive accumulation of aggregated proteins, reactive oxygen species, and ultimately cell death. In addition, we examined complementary cytoprotective mechanisms involving the activation of the heat shock response (HSR), and found that induction of heat shock protein 70 kDa (Hsp72) protected against proteasome inhibitor-induced cell death in human bladder cancer cells. Finally, investigation of a novel histone deacetylase 6 (HDAC6)-selective inhibitor suggested that the cytoprotective role of the cytoplasmic histone deacetylase 6 (HDAC6) in response to proteasome inhibition may have been previously overestimated.
Resumo:
The increased expression of epidermal growth factor receptor induced by tumor necrosis factor α renders pancreatic cancer cells more susceptible to antibody-dependent cellular cytotoxicity by a mAb specific for this receptor. Laboratory studies with athymic mice bearing xenografts of human pancreatic cancer cells demonstrated a cytokine-induced ability of the mAb to cause significant tumor regression. In a phase I/II clinical trial, 26 patients with unresectable pancreatic cancer were enrolled into three cohorts receiving variable amounts of the antibody together with a constant amount of tumor necrosis factor α. With increasing doses of antibody, the growth of the primary tumor was significantly inhibited. This was reflected by a longer median survival, with one complete remission lasting for 3 years obtained with the highest dose of antibody employed. Thus, a combination of the cytokine, tumor necrosis factor α, with a mAb to the epidermal growth factor receptor offers a potentially useful approach for the treatment of pancreatic cancer.
Resumo:
NK1.1+ T [natural killer (NK) T] cells express an invariant T cell antigen receptor alpha chain (TCR alpha) encoded by V alpha 14 and J alpha 281 segments in association with a limited number of V betas, predominantly V beta 8.2. Expression of the invariant V alpha 14/J alpha 281, but not V alpha 1, TCR in transgenic mice lacking endogenous TCR alpha expression blocks the development of conventional T alpha beta cells and leads to the preferential development of V alpha 14 NK T cells, suggesting a prerequisite role of invariant V alpha 14 TCR in NK T cell development. In V beta 8.2 but not B beta 3 transgenic mice, two NK T cells with different CD3 epsilon expressions, CD3 epsilon(dim) and CD3 epsilon(high), can be identified. CD3 epsilon(high) NK T cells express surface V alpha 14/V beta 8 TCR, indicating a mature cell type, whereas CD3 epsilon(dim) NK T cells express V beta 8 without V alpha 14 TCR and no significant CD3 epsilon expression (CD3 epsilon(dim)) on the cell surface. However, the latter are positive for recombination activating gene (RAG-1 and RAG-2) mRNA, which are only expressed in the precursor or immature T cell lineage, and also possess CD3 epsilon mRNA in their cytoplasm, suggesting that CD3 epsilon(dim) NK T cells are the precursor of V alpha 14 NK T cells.
Resumo:
Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus.