900 resultados para oxidative
Resumo:
The catalytic performances of Mn-based catalysts have been investigated for the oxidative dehydrogenation of both ethane (ODE) and propane (ODP). The results show that a LiCl/MnOx/PC (Portland cement) catalyst has an excellent catalytic performance for oxidative dehydrogenation of both ethane and propane to ethylene and propylene, more than 60% alkanes conversion and more than 80% olefins selectivity could be achieved at 650 degrees C. In addition, the results indicate that Mn-based catalysts belong to p-type semiconductors, the electrical conductivity of which is the main factor in influencing the olefins selectivity. Lithium, chlorine and PC in the LiCl/MnOx/PC catalyst are all necessary components to keep the excellent catalytic performance at a low temperature.
Resumo:
The polymer-supported bimetallic catalyst FVP-PdCl2-2CuCl(2) (PVP, poly(N-vinyl-2-pyrrolidone), obtained in situ by the addition of CuCl2 to an alcoholic solution of PVP-PdCl2, exhibits high selectivity and activity for the oxidative carbonylation of aniline with carbon monoxide and oxygen to ethyl N-phenylcarbamate in the presence of a base (NaOAc) under atmospheric pressure. The strong synergic effect of Pd-Cu gives rise to a clear increase in the selectivity and activity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.
Resumo:
An oxygen permeable membrane based on Ba0.5Sr0.5Co0.8-Fe0.2O3-delta is used to supply lattice oxide continuously for oxidative dehydrogenation of ethane to ethylene with selectivity as high as 90% at 650degreesC.
Resumo:
The oxidative dehydrogenation (ODH) of propane was investigated on Ni-V-O catalysts in a wide range of vanadium contents (5-40%). The addition of a small amount of vanadium significantly increased the catalytic activity of NiO for oxidative dehydrogenation of propane to propene. The formation of propene has a good correlation with the coexistence of NiO and Ni3V2O8. This result strongly suggests that a synergetic effect exists between them in NiXV1-XOY (X = 0.95 to 0.6). The best results were obtained with a high Ni/V ratio (e.g. X = 0.95 to 0.85). The active sites and selective oxygen species are discussed. The influence of the catalyst preparation technique and the redox properties of the catalyst were also examined.
Resumo:
The polymer-supported bimetallic catalyst PVP-PdCl2-MnCl2 (PVP=poly(N-vinyl-2-pyrrolidone)) exhibits high activity and selectivity for the oxidative carbonylation of amines with carbon monoxide and oxygen to carbamate esters under atmospheric pressure in the presence of a base (NaOAc). This catalyst is prepared by the addition of MnCl2 to the alcoholic solution of PVP-PdCl2 in situ. A remarkable bimetallic synergic effect and the role of PVP in PVP-PdCl2-MXn (MXn=the second transition metal component such as NiCl2, CoCl2, MnCl2 and FeCl3) gives rise to an obvious increase in the conversion and selectivity for the reaction. Among the second metal components tested, Mn-Pd exerts the strongest synergic effect. (C) 1999 Elsevier Science B.V. All rights reserved.