966 resultados para oropharynx airway
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.
Resumo:
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.
Resumo:
Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation
Resumo:
Obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is the periodic reduction or cessation of airflow during sleep. The syndrome is associated whit loud snoring, disrupted sleep and observed apnoeas. Surgery aims to alleviate symptoms of daytime sleepiness, improve quality of life and reduce the signs of sleep apnoea recordered by polysomnography. Surgical intervention for snoring and OSAHS includes several procedures, each designed to increase the patency of the upper airway. Procedures addressing nasal obstruction include septoplasty, turbinectomy, and radiofrequency ablation (RF) of the turbinates. Surgical procedures to reduce soft palate redundancy include uvulopalatopharyngoplasty with or without tonsillectomy, uvulopalatal flap, laser-assisted uvulopalatoplasty, and RF of the soft palate. More significant, however, particularly in cases of severe OSA, is hypopharyngeal or retrolingual obstruction related to an enlarged tongue, or more commonly due to maxillomandibular deficiency. Surgeries in these cases are aimed at reducing the bulk of the tongue base or providing more space for the tongue in the oropharynx so as to limit posterior collapse during sleep. These procedures include tongue-base suspension, genioglossal advancement, hyoid suspension, lingualplasty, and maxillomandibular advancement. We reviewed 269 patients undergoing to osas surgery at the ENT Department of Forlì Hospital in the last decade. Surgery was considered a success if the postoperative apnea/hypopnea index (AHI) was less than 20/h. According to the results, we have developed surgical decisional algorithms with the aims to optimize the success of these procedures by identifying proper candidates for surgery and the most appropriate surgical techniques. Although not without risks and not as predictable as positive airway pressure therapy, surgery remains an important treatment option for patients with obstructive sleep apnea (OSA), particularly for those who have failed or cannot tolerate positive airway pressure therapy. Successful surgery depends on proper patient selection, proper procedure selection, and experience of the surgeon. The intended purpose of medical algorithms is to improve and standardize decisions made in the delivery of medical care, assist in standardizing selection and application of treatment regimens, to reduce potential introduction of errors. Nasal Continuous Positive Airway Pressure (nCPAP) is the recommended therapy for patients with moderate to severe OSAS. Unfortunately this treatment is not accepted by some patient, appears to be poorly tolerated in a not neglible number of subjects, and the compliance may be critical, especially in the long term if correctly evaluated with interview as well with CPAP smart cards analysis. Among the alternative options in Literature, surgery is a long time honoured solution. However until now no clear scientific evidence exists that surgery can be considered a really effective option in OSAHS management. We have design a randomized prospective study comparing MMA and a ventilatory device (Autotitrating Positive Airways Pressure – APAP) in order to understand the real effectiveness of surgery in the management of moderate to severe OSAS. Fifty consecutive previously full informed patients suffering from severe OSAHS were enrolled and randomised into a conservative (APAP) or surgical (MMA) arm. Demographic, biometric, PSG and ESS profiles of the two group were statistically not significantly different. One year after surgery or continuous APAP treatment both groups showed a remarkable improvement of mean AHI and ESS; the degree of improvement was not statistically different. Provided the relatively small sample of studied subjects and the relatively short time of follow up, MMA proved to be in our adult and severe OSAHS patients group a valuable alternative therapeutical tool with a success rate not inferior to APAP.
Resumo:
Im Rahmen der vorliegenden Arbeit wird die intratumorale Heterogenität von biologischen Parametern beim Plattenepithelkarzinom des Oropharynx untersucht.Es werden mehrere Gewebeproben aus unterschiedlichen Regionen von 20 Plattenepithelkarzinomen des Oropharynx und 12 korrespondierenden Lymphknotenmetastasen untersucht. 15 der 20 Tumoren sind metastasierende Tumoren, 5 Tumoren sind nichtmetastasierend .Die untersuchten Oropharynxkarzinome besitzen eine heterogene Tumorarchitektur. Durch die Untersuchung mehrerer Gewebeproben gelingt der Nachweis verschiedener Stammzellinien innerhalb der Tumoren, außerdem kann eine große Variabilität für die untersuchten Parameter in den Einzelregionen festgestellt werden. Selbst stammzelliniengleiche Regionen haben sowohl unterschiedliche DNA-Indizes (2cDI und 5c-Exceeding-Rate), als auch stark variierende Expressionsraten für CD44v4/5, CD44v6, E-Cadherin, Integrinketten alpha v und beta 3, sowie unterschiedliche histologische Eigenschaften wie Gefäßdichte und Tumorfrontmorphologie. Diese Heterogenität ist ein bisher wenig beachtetes biologisches Charakteristikum der Plattenepithelkarzinome des Oropharynx. Künftig wird sie für Diagnostik und Therapie dieser Tumorentitäten möglicherweise eine wichtige Rolle spielen.
Resumo:
The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.
Resumo:
The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm2 and 561 ng Au/cm2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFalpha, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFalpha, INFgamma). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.
Resumo:
Recent advances have revealed that during exogenous airway challenge, airway diameters can not be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. In order to better understand these phenomena, we developed a multiscale model which allows us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle (ASM) contraction on individual airway segments, which together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition is coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing agonist to less constricted regions. This results in a negative feedback which may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insight into several phenomena including the intra- and inter-breath dynamics of airway constriction throughout the tree structure.
Resumo:
Tumours in the oral cavity and oropharynx differ in presentation and prognosis and the detection of spread of tumour from one subsite to another is essential for the T-staging. This article reviews the anatomy and describes the pattern of spread of different cancers arising in the oral cavity and oropharynx; the imaging findings on computerized tomography and magnetic resonance imaging are also described. Brief mention is made on the role of newer imaging modalities such as [(18)F]fluorodeoxyglucose-positron emission tomography/computed tomography, perfusion studies and diffusion-weighted magnetic resonance imaging.
Resumo:
We present the use of the SensaScope, an S-shaped rigid fibreoptic scope with a flexible distal end, in a series of 13 patients at high risk of, or known to have, a difficult intubation. Patients received conscious sedation with midazolam or fentanyl combined with a remifentanil infusion and topical lidocaine to the oral mucosa and to the trachea via a trans-cricoid injection. Spontaneous ventilation was maintained until confirmation of tracheal intubation. In all cases, tracheal intubation was achieved using the SensaScope. The median (IQR [range]) insertion time (measured from the time the facemask was taken away from the face until an end-expiratory CO(2) reading was visible on the monitor) was 58 s (38-111 [28-300]s). In nine of the 13 cases, advancement of the SensaScope into the trachea was easy. Difficulties included a poor view associated with a bleeding diathesis and saliva, transient loss of spontaneous breathing, and difficulty in advancing the tracheal tube in a patient with unforeseen tracheal narrowing. A poor view in two patients was partially improved by a high continuous flow of oxygen. The SensaScope may be a valuable alternative to other rigid or flexible fibreoptic scopes for awake intubation of spontaneously breathing patients with a predicted difficult airway.
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.