933 resultados para organic electronics semiconductors detectors sensors X-rays
Resumo:
Molybdenum L-shell X-rays were produced by Xeq+ (q = 25-30) bombardment at low energies from 2.65 to 4.55 keV/amu (350-600 keV). We observed a kinetic energy threshold of Mo L-shell ionization down to 2.65-3.03 keV/amu (350-400 keV). The charge state effect of the incident ions was not observed which shows that the ions were neutralized, reaching an equilibrium charge state and losing their initial charge state memory before production of L-shell vacancies resulted in X-ray production. The experimental ionization cross sections were compared with those from Binary Encounter Approximation theory. Taking into account projectile deflection in the target nuclear Coulomb field, the ionization cross section of Mo L-shell near the kinetic energy threshold was well described. (C) 2010 Published by Elsevier B.V.
Resumo:
The crystal structure of Er(PM)(3)(TP)(2) [PM = 1-Phenyl-3-methyl-4-isobutyryl-5-pyrazoloiie, TP = triphenyl phosphine oxide] was reported and its photoluminescence properties were studied by UV-vis absorption, excited, and emission spectra. The Judd-ofelt theory was introduced to calculate the radiative transition rate and the radiative decay time of 3.65 ms for the I-4(13/2) -> I-4(15/2) transition of Er3+ ion in this complex.
Resumo:
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.
Resumo:
A simple and efficient method for patterning polymeric semiconductors for applications in the field of organic electronics is proposed. The entire polymer layer, except for the desired pattern, is selectively lifted off from a flat poly(dimethylsiloxane) (PDMS) stamp surface by an epoxy mold with a relief pattern. This is advantageous because the elastic deformation of the PDMS stamp around protrusions of a patterned stamp under pressure can assist the plastic deformation of a polymer film along the pattern edges, yielding large area and high quality patterns, and the PDMS surface has low surface energy, which allows the easy removal of the polymer film.
Resumo:
Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.
Resumo:
A diode with a reverse rectifying characteristics was fabricated based on the organic heterojunction of copper phthalocyanine (CuPc) and copper-hexadecafluoro-phthalocyanine (F16CuPc). At the heterojunction interface, HOMO of CuPc is bended upwards and LUMO of F16CuPc is bended downwards, since the charge carriers were accumulated at both side of the interface, electrons in F16CuPc and holes in CuPc. The thickness of holes accumulated at the CuPc layer is about 10 nm. which was determined by fabricating organic field-effect transistors with active layers in series of thickness. By utilizing the heterojunction-effect, the threshold voltage in organic transistors can be modified.
Resumo:
C.R. Bull and R. Zwiggelaar, 'Discrimination between low atomic number materials from their characteristic scattering of X-ray radiation', Journal of Agricultural Engineering Research 68 (2), 77-87 (1997)
Resumo:
R. Zwiggelaar, C.R. Bull, and M.J. Mooney, 'X-ray simulations for imaging applications in the agricultural and food industry', Journal of Agricultural Engineering Research 63(2), 161-170 (1996)
Resumo:
Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'New instrumentation for micro-imaging X-ray absorption spectroscopy using optical detection methods', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 246(2) pp.445-451 RAE2008
Resumo:
Grande, Manuel; Dunkin, S. K.; Kellett, B., 'Opportunities for X-ray remote sensing at Mercury', Planetary And Space Science (2001) 49(14-15) pp.1553-1559 RAE2008
Resumo:
Grande, Manuel; Kellett, B.; Howe, C.; Perry, C.H., 'The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon - First Results', Planetary And Space Science (2007) 55(4) pp.494-502 RAE2008
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and UV irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains are numerically computed by solving the coagulation equation for settling dust particles, with the result that the mass and total surface area of dust grains per unit volume of the gas in the disks are very small, except at the midplane. The H2 level populations and line emission are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk and in the surface layer, while the UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-rayinduced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the dust properties. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient. This makes the level populations change from LTE to non-LTE distributions, which results in changes to the line ratios. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.