930 resultados para object-oriented software framework
Resumo:
Access control (AC) limits access to the resources of a system only to authorized entities. Given that information systems today are increasingly interconnected, AC is extremely important. The implementation of an AC service is a complicated task. Yet the requirements to an AC service vary a lot. Accordingly, the design of an AC service should be flexible and extensible in order to save development effort and time. Unfortunately, with conventional object-oriented techniques, when an extension has not been anticipated at the design time, the modification incurred by the extension is often invasive. Invasive changes destroy design modularity, further deteriorate design extensibility, and even worse, they reduce product reliability. ^ A concern is crosscutting if it spans multiple object-oriented classes. It was identified that invasive changes were due to the crosscutting nature of most unplanned extensions. To overcome this problem, an aspect-oriented design approach for AC services was proposed, as aspect-oriented techniques could effectively encapsulate crosscutting concerns. The proposed approach was applied to develop an AC framework that supported role-based access control model. In the framework, the core role-based access control mechanism is given in an object-oriented design, while each extension is captured as an aspect. The resulting framework is well-modularized, flexible, and most importantly, supports noninvasive adaptation. ^ In addition, a process to formalize the aspect-oriented design was described. The purpose is to provide high assurance for AC services. Object-Z was used to specify the static structure and Predicate/Transition net was used to model the dynamic behavior. Object-Z was extended to facilitate specification in an aspect-oriented style. The process of formal modeling helps designers to enhance their understanding of the design, hence to detect problems. Furthermore, the specification can be mathematically verified. This provides confidence that the design is correct. It was illustrated through an example that the model was ready for formal analysis. ^
Resumo:
Software Engineering is one of the most widely researched areas of Computer Science. The ability to reuse software, much like reuse of hardware components is one of the key issues in software development. The object-oriented programming methodology is revolutionary in that it promotes software reusability. This thesis describes the development of a tool that helps programmers to design and implement software from within the Smalltalk Environment (an Object- Oriented programming environment). The ASDN tool is part of the PEREAM (Programming Environment for the Reuse and Evolution of Abstract Models) system, which advocates incremental development of software. The Asdn tool along with the PEREAM system seeks to enhance the Smalltalk programming environment by providing facilities for structured development of abstractions (concepts). It produces a document that describes the abstractions that are developed using this tool. The features of the ASDN tool are illustrated by an example.
Resumo:
Object-oriented design and object-oriented languages support the development of independent software components such as class libraries. When using such components, versioning becomes a key issue. While various ad-hoc techniques and coding idioms have been used to provide versioning, all of these techniques have deficiencies - ambiguity, the necessity of recompilation or re-coding, or the loss of binary compatibility of programs. Components from different software vendors are versioned at different times. Maintaining compatibility between versions must be consciously engineered. New technologies such as distributed objects further complicate libraries by requiring multiple implementations of a type simultaneously in a program. This paper describes a new C++ object model called the Shared Object Model for C++ users and a new implementation model called the Object Binary Interface for C++ implementors. These techniques provide a mechanism for allowing multiple implementations of an object in a program. Early analysis of this approach has shown it to have performance broadly comparable to conventional implementations.
Resumo:
VALENTIM, R. A. M. ; SOUZA NETO, Plácido Antônio de. O impacto da utilização de design patterns nas métricas e estimativas de projetos de software: a utilização de padrões tem alguma influência nas estimativas?. Revista da FARN, Natal, v. 4, p. 63-74, 2006
Resumo:
VALENTIM, R. A. M. ; SOUZA NETO, Plácido Antônio de. O impacto da utilização de design patterns nas métricas e estimativas de projetos de software: a utilização de padrões tem alguma influência nas estimativas?. Revista da FARN, Natal, v. 4, p. 63-74, 2006
Resumo:
At the core of the analysis task in the development process is information systems requirements modelling, Modelling of requirements has been occurring for many years and the techniques used have progressed from flowcharting through data flow diagrams and entity-relationship diagrams to object-oriented schemas today. Unfortunately, researchers have been able to give little theoretical guidance only to practitioners on which techniques to use and when. In an attempt to address this situation, Wand and Weber have developed a series of models based on the ontological theory of Mario Bunge-the Bunge-Wand-Weber (BWW) models. Two particular criticisms of the models have persisted however-the understandability of the constructs in the BWW models and the difficulty in applying the models to a modelling technique. This paper addresses these issues by presenting a meta model of the BWW constructs using a meta language that is familiar to many IS professionals, more specific than plain English text, but easier to understand than the set-theoretic language of the original BWW models. Such a meta model also facilitates the application of the BWW theory to other modelling techniques that have similar meta models defined. Moreover, this approach supports the identification of patterns of constructs that might be common across meta models for modelling techniques. Such findings are useful in extending and refining the BWW theory. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we describe a distributed object oriented logic programming language in which an object is a collection of threads deductively accessing and updating a shared logic program. The key features of the language, such as static and dynamic object methods and multiple inheritance, are illustrated through a series of small examples. We show how we can implement object servers, allowing remote spawning of objects, which we can use as staging posts for mobile agents. We give as an example an information gathering mobile agent that can be queried about the information it has so far gathered whilst it is gathering new information. Finally we define a class of co-operative reasoning agents that can do resource bounded inference for full first order predicate logic, handling multiple queries and information updates concurrently. We believe that the combination of the concurrent OO and the LP programming paradigms produces a powerful tool for quickly implementing rational multi-agent applications on the internet.
Resumo:
Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced
Resumo:
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually targeting either the imperative or the object oriented paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird- Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general alternative to slicing functional programs
Resumo:
Object-oriented programming languages presently are the dominant paradigm of application development (e. g., Java,. NET). Lately, increasingly more Java applications have long (or very long) execution times and manipulate large amounts of data/information, gaining relevance in fields related with e-Science (with Grid and Cloud computing). Significant examples include Chemistry, Computational Biology and Bio-informatics, with many available Java-based APIs (e. g., Neobio). Often, when the execution of such an application is terminated abruptly because of a failure (regardless of the cause being a hardware of software fault, lack of available resources, etc.), all of its work already performed is simply lost, and when the application is later re-initiated, it has to restart all its work from scratch, wasting resources and time, while also being prone to another failure and may delay its completion with no deadline guarantees. Our proposed solution to address these issues is through incorporating mechanisms for checkpointing and migration in a JVM. These make applications more robust and flexible by being able to move to other nodes, without any intervention from the programmer. This article provides a solution to Java applications with long execution times, by extending a JVM (Jikes research virtual machine) with such mechanisms. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
CoDeSys "Controller Development Systems" is a development environment for programming in the area of automation controllers. It is an open source solution completely in line with the international industrial standard IEC 61131-3. All five programming languages for application programming as defined in IEC 61131-3 are available in the development environment. These features give professionals greater flexibility with regard to programming and allow control engineers have the ability to program for many different applications in the languages in which they feel most comfortable. Over 200 manufacturers of devices from different industrial sectors offer intelligent automation devices with a CoDeSys programming interface. In 2006, version 3 was released with new updates and tools. One of the great innovations of the new version of CoDeSys is object oriented programming. Object oriented programming (OOP) offers great advantages to the user for example when wanting to reuse existing parts of the application or when working on one application with several developers. For this reuse can be prepared a source code with several well known parts and this is automatically generated where necessary in a project, users can improve then the time/cost/quality management. Until now in version 2 it was necessary to have hardware interface called “Eni-Server” to have access to the generated XML code. Another of the novelties of the new version is a tool called Export PLCopenXML. This tool makes it possible to export the open XML code without the need of specific hardware. This type of code has own requisites to be able to comply with the standard described above. With XML code and with the knowledge how it works it is possible to do component-oriented development of machines with modular programming in an easy way. Eplan Engineering Center (EEC) is a software tool developed by Mind8 GmbH & Co. KG that allows configuring and generating automation projects. Therefore it uses modules of PLC code. The EEC already has a library to generate code for CoDeSys version 2. For version 3 and the constant innovation of drivers by manufacturers, it is necessary to implement a new library in this software. Therefore it is important to study the XML export to be then able to design any type of machine. The purpose of this master thesis is to study the new version of the CoDeSys XML taking into account all aspects and impact on the existing CoDeSys V2 models and libraries in the company Harro Höfliger Verpackungsmaschinen GmbH. For achieve this goal a small sample named “Traffic light” in CoDeSys version 2 will be done and then, using the tools of the new version it there will be a project with version 3 and also the EEC implementation for the automatically generated code.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Applications refactorings that imply the schema evolution are common activities in programming practices. Although modern object-oriented databases provide transparent schema evolution mechanisms, those refactorings continue to be time consuming tasks for programmers. In this paper we address this problem with a novel approach based on aspect-oriented programming and orthogonal persistence paradigms, as well as our meta-model. An overview of our framework is presented. This framework, a prototype based on that approach, provides applications with aspects of persistence and database evolution. It also provides a new pointcut/advice language that enables the modularization of the instance adaptation crosscutting concern of classes, which were subject to a schema evolution. We also present an application that relies on our framework. This application was developed without any concern regarding persistence and database evolution. However, its data is recovered in each execution, as well as objects, in previous schema versions, remain available, transparently, by means of our framework.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática