820 resultados para normalized algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We herein present a preliminary practical algorithm for evaluating complementary and alternative medicine (CAM) for children which relies on basic bioethical principles and considers the influence of CAM on global child healthcare. CAM is currently involved in almost all sectors of pediatric care and frequently represents a challenge to the pediatrician. The aim of this article is to provide a decision-making tool to assist the physician, especially as it remains difficult to keep up-to-date with the latest developments in the field. The reasonable application of our algorithm together with common sense should enable the pediatrician to decide whether pediatric (P)-CAM represents potential harm to the patient, and allow ethically sound counseling. In conclusion, we propose a pragmatic algorithm designed to evaluate P-CAM, briefly explain the underlying rationale and give a concrete clinical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical method for spectroscopic ellipsometry of thick transparent films. When an analytical expression for the dispersion of the refractive index (which contains several unknown coefficients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness. Then the thickness is varied within a range (according to its approximate value). The final result given by our method is as follows: The sample thickness is considered to be the one that gives the best fitting. The refractive index is defined by the coefficients obtained for this thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyogenic liver abscess is a severe condition and a therapeutic challenge. Treatment failure may be due to an unrecognized ingested foreign body that migrated from the gastrointestinal tract. There has recently been a marked increase in the number of reported cases of this condition, but initial misdiagnosis as cryptogenic liver abscess still occurs in the majority of cases. We conducted the current study to characterize this entity and provide a diagnostic strategy applicable worldwide. To this end, data were collected from our case and from a systematic review that identified 59 well-described cases. Another systematic review identified series of cryptogenic-and Asian Klebsiella-liver abscess; these data were pooled and compared with the data from the cases of migrated foreign body liver abscess. The review points out the low diagnostic accuracy of history taking, modern imaging, and even surgical exploration. A fistula found through imaging procedures or endoscopy warrants surgical exploration. Findings suggestive of foreign body migration are symptoms of gastrointestinal perforation, computed tomography demonstration of a thickened gastrointestinal wall in continuity with the abscess, and adhesions seen during surgery. Treatment failure, left lobe location, unique location (that is, only 1 abscess location within the liver), and absence of underlying conditions also point to the diagnosis, as shown by comparison with the cryptogenic liver abscess series. This study demonstrates that migrated foreign body liver abscess is a specific entity, increasingly reported. It usually is not cured when unrecognized, and diagnosis is mainly delayed. This study provides what we consider the best available evidence for timely diagnosis with worldwide applicability. Increased awareness is required to treat this underestimated condition effectively, and further studies are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.