990 resultados para nonadiabatic coupling
“Deborah Numbers”, Coupling Multiple Space and Time Scales and Governing Damage Evolution to Failure
Resumo:
Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.
Resumo:
We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.
Resumo:
This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.
One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.
Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.
The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.
Resumo:
Numerical simulations of fs laser propagation in water have been made to explain the small-scale filaments in water we have observed by a nonlinear fluorescence technique. Some analytical descriptions combined with numerical simulations show that a space-frequency coupling mainly from the interplay among self-phase modulation, dispersion and phase mismatching will reshape the laser beam into a conical wave which plays a major role of energy redistribution and can prevent laser beam from self-guiding over a long distance. An effective group velocity dispersion is introduced to explain the pulse broadening and compression in the filamentation. (c) 2005 American Institute of Physics.
Resumo:
We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.