921 resultados para non-dissociative electron capture
Resumo:
In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.
Resumo:
We describe how the method of detection of delayed K x-rays produced by the electron capture decay of the residual nuclei can be a powerful tool in the investigation of the effect of the breakup process on the complete fusion (CF) cross-section of weakly bound nuclei at energies close to the Coulomb barrier. This is presently one of the most interesting subjects under investigation in the field of low-energy nuclear reactions, and the difficult experimental task of separating CF from the incomplete fusion (ICF) of one of the breakup fragments can be achieved by the x-ray spectrometry method. We present results for the fusion of the (9)Be + (144)Sm system. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The influence of the sample matrix in the CC-electron-capture detection analysis of the pesticides dimethoate, diazinon, chlorothalonil.. parathion methyl and fenitrothion in fruits samples has been studied. Experiments have been carried out where the pesticide responses in standard solutions prepared in selected solvent were compared with their response when present in apple, mango, papaya, banana, pineapple and melon extracts. The presence of matrix effects (MEs) and their extent were shown to be simultaneously influenced by several factors (matrix concentration, matrix type, pesticide concentration, analytical range). Pronounced MEs were observed particularly for dimethoate and diazinon in all matrices tested; in lower concentrations, all pesticides presented significant ME. The other pesticides presented variable ME. Higher ME enhancement was detected at lower pesticide concentration levels of and/or at higher matrix concentration solutions. The ME detected for fenitrothion, in the analytical range evaluated, were dependent on matrix type. For each pesticide, solvent and matrix-matched calibrations were compared for all fruit samples, and it could be concluded that quantitation based on standard solutions prepared in blank matrix extract (matrix-matched calibration) should be used to compensate the MEs and to obtain more accurate results for the pesticides studied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A double antibody sandwich ELISA (DAS-ELISA) was developed and employed for simultaneous direct detection of infectious bursal disease virus (IBDV) from bursal samples and to measure the humoral response, using the same basic immunoreagents, the purified and non-purified antigen, capture antibody and chicken hyperimmune sera were prepared, and standardized for this purpose, the DAS-ELISA was applied to both 80 bursal suspensions and 224 corresponding serum samples from vaccinated and non-vaccinated commercial hocks, Bursae samples were collected at 2 weeks of age, and submitted to histological examination, virus isolation in specific pathogen-free chickens embryos, and the DAS-ELISA technique, Serum titres obtained in indirect ELISA and serum neutralization test were compared with those in DAS-ELISA, the agreement was 80% between DAS-ELISA, and the conventional techniques, with high sensitivity (87%) and specificity (90%).
Resumo:
The low-energy scattering of the ortho-positronium (Ps) by H, He, Ne, and Ar atoms has been investigated in the coupled-channel framework by using a recently proposed time-reversal symmetric non-local electron-exchange model potential with a single parameter C. For H and He, we use a three-Ps-state coupled-channel model and, for Ar and Ne, we use a static-exchange model. The sensitivity of the results is studied with respect to the parameter C. Present low-energy cross-sections for He, Ne and Ar are in good agreement with experiment. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The scattering of ortho-positronium (Ps) by H-2 has been investigated using a three-Ps-state (Ps(1s,2s, 2p)H-2(X (1)Sigma(g)(+))) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B (1)Sigma(u)(+) and b (3)Sigma(u)(+) excitations of H-2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H-2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.
Resumo:
In the present study an evaluation was made of a method for the determination of organochlorine pesticide residues in ethoxylated lanolin. Samples were homogenized with Celite, transferred to chromatographic columns, prepacked with silica gel deactivated to 10%. The pesticide elution was processed with n-hexane-dichloromethane and the concentrated eluate was analyzed using gas-liquid chromatography (GC) with electron capture detection (ECD). The composition of the elution solvent was a significant factor for the recovery of the pesticides. Mean recoveries obtained for fortified samples ranged from 87 to 94% for p,p'-DDE, dieldrin, endrin, p,p'-DDD and p,p'-DDT. Optimization of the experimental conditions resulted in a small-scale method that combines extraction and cleanup in a single step. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
Fencamfamine (FCF) is a psychostimulant drug classified as an indirect dopamine agonist. In the present study we evaluated the daily variation in plasma FCF concentration and in striatal dopamine receptors. Adult male Wistar rats (250-300 g) maintained on a 12-h light/12-h dark cycle (lights on at 07:00 h) were used. Rats received FCF (10.0 mg/kg, ip) at 09:00, 15:00, 21:00 or 03:00 h and blood samples were collected 30 (N = 6) or 60 (N = 6) min after the injections. Plasma FCF was measured by gas chromatography using an electron capture detector. Two-way ANOVA showed significant differences in FCF concentration when blood samples were collected 30 min after the injection, and the highest value was obtained following injection 21:00 h. Moreover, at 15:00, 21:00 and 03:00h, plasma FCF levels were significantly lower 60 min after injection when compared to the 30-min interval. Two other groups of rats (N = 6) were decapitated at 09:00 or 21:00 h and the striata were dissected for the binding assays. The Bmax for [H-3]-spiroperidol binding to striatal membranes was higher at 21:00 h, without changes in affinity constant (Kd). In conclusion, plasma FCF levels and dopamine receptors undergo daily variation,a phenomenon that should be considered to explain the circadian time-dependent effects of FCF.
Resumo:
A rapid and efficient analytical method is presented for the quantitative analysis of 10 organochlorine pesticides in corn meal. The extraction and clean up steps are combined into one step by transferring the sample to a chromatographic column prepacked with alumina and silica gel. The pesticides are eluted with n-hexane-dichloromethane 9:1 (v/v) and the extracts analized by gas-liquid chromatography with electron capture detection, the average recoveries were between 78% and 98% and the detection limits were between 1 and 5 ng/g.
Resumo:
An efficient analytical method is described for the analysis of dicofol residues in pulp and orange peel. Samples are mixed with Celite and transferred to chromatographic columns prepacked with silica gel. Dicofol is eluted with ethyl acetate, and the extracts are analyzed by gas chromatography with electron capture detection. Mean recoveries for dicofol at levels of 0.5, 2.0, 5.0, and 10 mg/kg ranged from 87 to 95% with relative standard deviation values between 2.6 and 9.0%. To investigate the effect of a pilot washing system on dicofol residues in oranges, the analytical procedure was applied to samples submitted to different treatments with commercial formulations under field and laboratory conditions. The orange samples with and without washing were analyzed in duplicate, and the results indicated that washing under the described conditions did not allow a complete removal of dicofol residues from orange peel.
Resumo:
The structural organization of Sb2O3-SbPO4 glasses has been studied by FTIR, Raman, P-31 MAS and spin echo NMR, Mossbauer and X-ray absorption spectroscopy (EXAFS and XANES at K and L-3,L-1-Sb edges). The combined results can be explained in terms of two potential mechanisms describing the change of the Sb(m) local environment upon incorporation of Q((4))-type phosphate. The formation of the latter species requires anionic compensation that may be adjusted by (a) formation of non bridging oxygen or (b) formation of SbO4E- groups (E = non-bonding electron pair). The second model is favored.
Resumo:
Fencamfamine (FCF) is a CNS stimulant that facilitates central dopaminergic transmission primarily through blockade of dopamine uptake. In the present study we evaluated the relationship between plasma FCF concentration and behavioral sensitization effect. Adult male Wistar rats (250-300 g) received FCF (10 mg/kg, kg, ip) or saline once or daily for 10 consecutive days (N = 10 for each group). Blood samples were collected 30 min after injections and plasma FCF was measured by gas chromatography using an electron capture detector. FCF treatment enhanced sniffing duration (16.8 +/- 0.8 vs 26.6 +/- 0.9 s) and decreased rearing behavior (8.2 +/- 0.8 vs 3.7 +/- 0.6 s) when days 1 and 10 of drug administration were compared. Comparison of pair of means by the Student t-test did not show significant differences in plasma FCF concentration (390 +/- 40 vs 420 +/- 11 ng/ml) when blood samples were collected 30 min after acute FCF administration or after daily administration of 10 mg/kg for 10 days. In conclusion, the behavioral sensitization to FCF could not be correlated with plasma drug levels, and changes in the activity of dopaminergic systems should be considered to explain the sensitization to the effect of FCF.
Resumo:
The efficiency of methods for the determination of hexachlorobenzene (HCB) and pentachlorophenol (PCP) in soil samples was evaluated. An on-line method was applied for HCB determination. Soil samples were transferred to chromatographic columns prepacked with alumina. The HCB elution was processed with n-hexane. The PCP was extracted from soil samples with n-hexane-acetone in an ultrasonic bath. After re-extraction with K2CO3 solution PCP was acetylated with acetic anhydride. The pentachlorophenyl acetate derivative was then extracted with n-hexane. The HCB and PCP derivative were analyzed by gas chromatography with electron capture detection (GC-ECD). Mean recoveries obtained from soil samples fortified at levels of 0.5; 4 and 20 ng g(-1) ranged from 91 to 100% for HCB, and for PCP, at levels of 10; 40 and 200 ng g(-1), ranged from 88 to 101%. These results demonstrated the efficiency of the proposed methods. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
A simple and efficient method is described for the determination of fenpropathrin in oranges, pears, apples and strawberries. The procedure: is based on the extraction of each homogenized fruit sample with hexane:acetone (1:1, v/v) mixture, followed, by a cleanup technique on a column packed with florisil, using a hexane:ethyl ether (7:3, v/v) mixture, and gas chromatographic, analysis with electron capture detection (ECD). The fortification levels (0.5; 1.0; 2.0 mg kg(-1)) were selected according to the maximum residue limits (MRLs) established for fenpropathrin by Brazilian legislation. Mean recoveries from five replicates of fortified fruit samples ranged from 83 % to 98 %, with:coefficients of variation from 1.4 to 13.5 and detection limits varying from 0.1 to 0.2 mg kg(-1).