896 resultados para networks in organization
Resumo:
In higher education, undergraduate teaching materials are increasingly becoming available online. There is a need to understand the complex processes that happen during their production and how social networks between different groups impact on their development. This paper draws on qualitative interviews and participant drawings of their social networks to understand the dynamics of creating a new e-compendium for a four-year online undergraduate nursing programme in Norway. Twenty staff interviews were undertaken to explore views of the e-compendium, the development process and the perceived networks that were formed during this course. Interview data were thematically analysed along with networks drawings. The findings showed three main institutional stakeholder groups emerging: the ‘management team’, ‘design team’ and ‘lecturers’. Analysis of social networks revealed variability of relations both within and between groups. The pedagogical designer, who was part of the design team, was central to communicating with and co-ordinating staff at all levels. The least well connected were the lecturers. To them, the e-compendium challenged and even threatened previously well-established notions of pedagogy. Future development of e-compendiums should account for the perceived lack of time and existing workload of lecturers so they may be involved with the development process.
Resumo:
The experimental projects discussed in this thesis are all related to the field of artificial molecular machines, specifically to systems composed of pseudorotaxane and rotaxane architectures. The characterization of the peculiar properties of these mechano-molecules is frequently associated with the analysis and elucidation of complex reaction networks; this latter aspect represents the main focus and central thread tying my thesis work. In each chapter, a specific project is described as summarized below: the focus of the first chapter is the realization and characterization of a prototype model of a photoactivated molecular transporter based on a pseudorotaxane architecture; in the second chapter is reported the design, synthesis, and characterization of a [2]rotaxane endowed with a dibenzylammonium station and a novel photochromic unit that acts as a recognition site for a DB24C8 crown ether macrocycle; in the last chapter is described the synthesis and characterization of a [3]rotaxane in which the relative number of rings and stations can be changed on command.
Resumo:
Personal archives are the archives created by individuals for their own purposes. Among these are the library and documentary collections of writers and scholars. It is only recently that archival literature has begun to focus on this category of archives, emphasising how their heterogeneous nature necessitates the conciliation of different approaches to archival description, and calling for a broader understanding of the principle of provenance, recognising that multiple creators, including subsequent researchers, can contribute to shaping personal archives over time by adding new layers of contexts. Despite these advances in the theoretical debate, current architectures for archival representation remain behind. Finding aids privilege a single point of view and do not allow subsequent users to embed their own, potentially conflicting, readings. Using semantic web technologies this study aims to define a conceptual model for writers' archives based on existing and widely adopted models in the cultural heritage and humanities domains. The model developed can be used to represent different types of documents at various levels of analysis, as well as record content and components. It also enables the representation of complex relationships and the incorporation of additional layers of interpretation into the finding aid, transforming it from a static search tool into a dynamic research platform. The personal archive and library of Giuseppe Raimondi serves as a case study for the creation of an archival knowledge base using the proposed conceptual model. By querying the knowledge graph through SPARQL, the effectiveness of the model is evaluated. The results demonstrate that the model addresses the primary representation challenges identified in archival literature, from both a technological and methodological standpoint. The ultimate goal is to bring the output par excellence of archival science, i.e. the finding aid, more in line with the latest developments in archival thinking.
Resumo:
Tutkimuksen tavoitteena on selvittää Kaakkois-Suomen TE-keskuksen toiminta-ajatuksen ja vision toteutumista alueellisten yhteistyökump-paneiden (ulkoinen näkökulma) ja henkilöstön (sisäinen näkökulma) kannalta, millä lailla he ovat kokeneet voineensa vaikuttaa alueellisten toimijoiden verkostoon, ja minkälaisia rooleja on löydettävissä verkostosta. Tutkimus on kaksiosainen sisältäen kvalitatiivisen teoriaosan, ja empiiriaosan. Teoriaosassa määritellään verkostokäsite ja verkostopiirteitä. Lisäksi pohditaan motiiveja verkostoitumiseen ja tutkitaan erilaisia verkostojaotteluja. Alueellista verkostoitumista käsitellään ei-hyötyä-tavoittelevan organisaation näkökulmasta. Lisäksi käydään läpi organisaation sisäistä näkökulmaa verkostoiduttaessa sekä sitä, voiko verkostoa johtaa. Tutkimuksen empiiriaosassa teemahaastatellaan alueellisia yhteistyökumppaneita sekä henkilöstön edustajia. Tutkimuksen perusteella voidaan todeta, että toiminta-ajatus on sisäistetty verkoston toiminnan lähtökohdaksi. Koetaan, että verkostoon voidaan vaikuttaa, mutta verkoston johtaminen on tilannekohtaista. Verkoston toimivuutta lisäävät siinä toimivien henkilöiden keskinäinen luottamus ja aktiivinen tiedonkulku. Käytännössä roolien erittely ei ole selkeätä, vaan eri roolit sekottuvat tilanteen mukaan. Vapaamuotoiset foorumit koetaan erityisen hedelmällisiksi uusia innovaatioita luotaessa ja hyvä käytäntöjä hyödynnettäessa.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
This study demonstrates and applies a social network methodology for studying the dynamics of hierarchies in organizations. Social network (blockmodel) analysis of verbal networks in four hospitals contrasted hierarchical and structurally equivalent partitions of the sociomatrices of frequent ties and perceptions of organizational culture. It was found that the verbal networks in these organizations follow a center periphery pattern rather than a hierarchical logic and that perceptions of culture vary more by verbal network than by formal hierarchy. The perceptions of culture of central groups in one organization are much like those of peripheral groups in another. In all four hospitals, structurally equivalent social networks are more important in predicting subcultures than are hierarchical groupings and hierarchy has a limited impact on the development of verbal networks. These findings suggest the value of an amoeba rather than a pyramid metaphor in interpreting the cultures and relational structures of organizations.
Resumo:
This conceptual paper aims to improve our understanding of how internationalised firms use outsourcing and offshoring strategies to manage knowledge and information through the life-cycle of integrated product-service solutions. More precisely, we identify the appropriate theoretical framework for this analysis and investigate through in-depth case studies how UK engineering firms organise, coordinate, and incentivise work that is executed in globally distributed teams. Our research focuses on their UK and India offices to study the organisation and governance of distributed teams. The research has several theoretical dimensions - organization; geography; time and knowledge - that it addresses as boundary challenges.
Resumo:
BACKGROUND Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. RESULTS HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. CONCLUSIONS The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.
Resumo:
Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.
Resumo:
Despite recent research on time (e.g. Hedaa & Törnroos, 2001), consideration of the time dimension in data collection, analysis and interpretation in research in supply networks is, to date, still limited. Drawing on a body of literature from organization studies, and empirical findings from a six-year action research programme and a related study of network learning, we reflect on time, timing and timeliness in interorganizational networks. The empirical setting is supply networks in the English health sector wherein we identify and elaborate various issues of time, within the case and in terms of research process. Our analysis is wide-ranging and multi-level, from the global (e.g. identifying the notion of life cycles) to the particular (e.g. different cycle times in supply, such as daily for deliveries and yearly for contracts). We discuss the ‘speeding up’ of inter-organizational ‘e’ time and tensions with other time demands. In closing the paper, we relate our conclusions to the future conduct of the research programme and supply research more generally, and to the practice of managing supply (in) networks.
Resumo:
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.
Resumo:
Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The double-frequency jitter is one of the main problems in clock distribution networks. In previous works, sonic analytical and numerical aspects of this phenomenon were studied and results were obtained for one-way master-slave (OWMS) architectures. Here, an experimental apparatus is implemented, allowing to measure the power of the double-frequency signal and to confirm the theoretical conjectures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for a(n)b(n)c(n), a context-sensitive language. The additional difficulty with a(n)b(n)c(n), compared with the context-free language a(n)b(n), consists of 'counting up' and 'counting down' letters simultaneously. The network solution is to oscillate in two principal dimensions, one for counting up and one for counting down. This study focuses on the dynamics employed by the sequential cascaded network, in contrast to the simple recurrent network, and the use of backpropagation through time. Found solutions generalize well beyond training data, however, learning is not reliable. The contribution of this study lies in demonstrating how the dynamics in recurrent neural networks that process context-free languages can also be employed in processing some context-sensitive languages (traditionally thought of as requiring additional computation resources). This continuity of mechanism between language classes contributes to our understanding of neural networks in modelling language learning and processing.
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.