903 resultados para network security
Resumo:
Computer viruses are an important risk to computational systems endangering either corporations of all sizes or personal computers used for domestic applications. Here, classical epidemiological models for disease propagation are adapted to computer networks and, by using simple systems identification techniques a model called SAIC (Susceptible, Antidotal, Infectious, Contaminated) is developed. Real data about computer viruses are used to validate the model. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The Brazilian Network of Food Data Systems (BRASILFOODS) has been keeping the Brazilian Food Composition Database-USP (TBCA-USP) (http://www.fcf.usp.br/tabela) since 1998. Besides the constant compilation, analysis and update work in the database, the network tries to innovate through the introduction of food information that may contribute to decrease the risk for non-transmissible chronic diseases, such as the profile of carbohydrates and flavonoids in foods. In 2008, data on carbohydrates, individually analyzed, of 112 foods, and 41 data related to the glycemic response produced by foods widely consumed in the country were included in the TBCA-USP. Data (773) about the different flavonoid subclasses of 197 Brazilian foods were compiled and the quality of each data was evaluated according to the USDAs data quality evaluation system. In 2007, BRASILFOODS/USP and INFOODS/FAO organized the 7th International Food Data Conference ""Food Composition and Biodiversity"". This conference was a unique opportunity for interaction between renowned researchers and participants from several countries and it allowed the discussion of aspects that may improve the food composition area. During the period, the LATINFOODS Regional Technical Compilation Committee and BRASILFOODS disseminated to Latin America the Form and Manual for Data Compilation, version 2009, ministered a Food Composition Data Compilation course and developed many activities related to data production and compilation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Brazilian social thought draws on the inspiration of past masters the common denominator of whose work is probably a deep humanism. Confronting the challenges of a fluid, ever-changing reality is now a matter of survival. The idea of climate change has made the environment, long relegated to second place, a matter of much wider interest and concern. The other great problem is poverty, and here, while there have been undeniable advances, much remains to be done. The main challenge is producing forms of social organization that will allow ordinary citizens to have an impact on what really matters. Developing policy in these areas has engaged the efforts of a wide range of experts from a variety of fields. Whereas university-educated intellectuals once formed an intelligentsia, today they are engaged in practical politics and much more often function as agents who link social actors together than as mere elaborators of theories.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
Australia is an increasingly important ally for the United States. It is willing to be part of challenging global missions, and its strong economy and growing self-confi dence suggest a more prominent role in both global and regional affairs. Moreover, its government has worked hard to strengthen the link between Canberra and Washington. Political and strategic affi nities between the two countries have been refl ected in--and complemented by--practiced military interoperability, as the two allies have sustained a pattern of security cooperation in relation to East Timor, Afghanistan and Iraq in the last 4 years. This growing collaboration between the two countries suggests that a reinvention of the traditional bilateral security relationship is taking place. At the core of this process lies an agreement about the need for engaging in more proactive strategic behavior in the changing global security environment, and a mutual acceptance of looming military and technological interdependence. But this new alliance relationship is already testing the boundaries of bipartisan support for security policy within Australia. Issues of strategic doctrine, defense planning, and procurement are becoming topics of fi erce policy debate. Such discussion is likely to be sharpened in the years ahead as Australia’s security relationship with the United States settles into a new framework.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
The conventional analysis for the estimation of the tortuosity factor for transport in porous media is modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds shows good agreement with a network model of randomly oriented intersecting pores for porosities upto about 50 percent, which is the region of practical interest. The predictions based on this network model are also found to be in better agreement with the data of Currie than earlier expressions developed for unconsolidated and grainy media.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.