905 resultados para network revenue management


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, the adaptation of Wireless Sensor Networks (WSNs) to application areas requiring mobility increased the security threats against confidentiality, integrity and privacy of the information as well as against their connectivity. Since, key management plays an important role in securing both information and connectivity, a proper authentication and key management scheme is required in mobility enabled applications where the authentication of a node with the network is a critical issue. In this paper, we present an authentication and key management scheme supporting node mobility in a heterogeneous WSN that consists of several low capabilities sensor nodes and few high capabilities sensor nodes. We analyze our proposed solution by using MATLAB (analytically) and by simulation (OMNET++ simulator) to show that it has less memory requirement and has good network connectivity and resilience against attacks compared to some existing schemes. We also propose two levels of secure authentication methods for the mobile sensor nodes for secure authentication and key establishment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD thesis is an empirical research project in the field of modern Polish history. The thesis focuses on Solidarity, the Network and the idea of workers’ self-management. In addition, the thesis is based on an in-depth analysis of Solidarity archival material. The Solidarity trade union was born in August 1980 after talks between the communist government and strike leaders at the Gdansk Lenin Shipyards. In 1981 a group called the Network rose up, due to cooperation between Poland’s great industrial factory plants. The Network grew out of Solidarity; it was made up of Solidarity activists, and the group acted as an economic partner to the union. The Network was the base of a grass-roots, nationwide workers’ self-management movement. Solidarity and the self-management movement were crushed by the imposition of Martial Law in December 1981. Solidarity revived itself immediately, and the union created an underground society. The Network also revived in the underground, and it continued to promote self-management activity where this was possible. When Solidarity regained its legal status in April 1989, workers’ self-management no longer had the same importance in the union. Solidarity’s new politico-economic strategy focused on free markets, foreign investment and privatization. This research project ends in July 1990, when the new Solidarity-backed government enacted a privatization law. The government decided to transform the property ownership structure through a centralized privatization process, which was a blow for supporters of workers’ self-management. This PhD thesis provides new insight into the evolution of the Solidarity union from 1980-1990 by analyzing the fate of workers’ self-management. This project also examines the role of the Network throughout the 1980s. There is analysis of the important link between workers’ self-management and the core ideas of Solidarity. In addition, the link between political and economic reform is an important theme in this research project. The Network was aware that authentic workers’ self-management required reforms to the authoritarian political system. Workers’ self-management competed against other politico-economic ideas during the 1980s in Poland. The outcome of this competition between different reform concepts has shaped modern-day Polish politics, economics and society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In all-optical networks, management of physical layer restrictions should collaborate in lightpath establishment. Label-Switched Path validation in Generalized MultiProtocol Label Switching on Dense Wavelength Division Multiplexing network requires the treatment of the physical impairment-related parameters along the provisioned route. In this paper we propose, for the first time in our view, the generation of an optical layer database by simulation that specifically characterizes the dynamic FWM impairments for the lightpaths provisioned in a GMPLS/DWDM network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.