974 resultados para network effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of stem cell-derived neuronal networks will promote experimental system development for drug screening, toxicological testing and disease modelling, providing that they mirror closely the functional competencies of their in vivo counterparts. The NT2 cell line is one of the best documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of these cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time in a human stem cell derived co-culture model that these cultures are also metabolically competent and demonstrate a functional astrocyte neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2 derived neurons and astrocytes we have shown that these cells modulate their glucose uptake in response to glutamate, an effect that was blocked by cytochalasin B and ouabain. Additionally we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown following treatment with glutamate, potassium, Isoproterenol and dbcAMP. Together these results demonstrate for the first time a functional ANLS in a human stem cell derived co-culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hálózatos iparágakban, ahogy a postai szolgáltatásoknál is, a forgalomban lévő készpénz nagyméretű működőtőkét jelenthet. A Magyar Posta a levél- és csomagkézbesítésen kívül jelentős készpénzforgalmat bonyolít le: nyugdíjakat, segélyeket és készpénz-átutalási megbízásokat továbbít. A forgalom napi ingadozása a vállalat likvideszköz-igényét jelentősen meghatározza. A posta esetében a postahivatalok készpénzgazdálkodása jól működő hüvelykujjszabályokon keresztül történik, ezek a szabályok döntési teret hagynak a hálózat heterogén egyedi szereplőinek. Az egyedi készletezési viselkedést a vállalati működőtőke meghatározásakor figyelembe kell venni. A tanulmány az egyedi készletezési szokások modellezésére új módszertant ajánl, majd a viselkedésmintákat csoportosítva a pénzkészletezésnek, a vállalati működőtőke szintjének és a vállalati likviditási pozíciónak a kapcsolatát elemzi. / === / The cash in circulation within network industries such as post-office services can repre-sent a sizeable quantity of operating capital. The Hungarian Post Office, besides han-dling mail, handles a significant amount of cash turnover, forwarding pensions, welfare benefits, and cash orders. Fluctuation in the daily volume of these is a strong factor in determining the company's liquidity requirements. The management of cash in post of-fices is governed by rules of thumb that operate well; the regulations leave decision-making scope for the diverse individual actors in the network. Attention has to be paid to individual cash holding when determining the corporate operating capital. The study suggests a new methodology for modelling the individual cash-holding habits, and goes on to group the behaviour patterns by analysing the connection between cash holding, level of corporate operating capital, and corporate liquidity position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As traffic congestion exuberates and new roadway construction is severely constrained because of limited availability of land, high cost of land acquisition, and communities' opposition to the building of major roads, new solutions have to be sought to either make roadway use more efficient or reduce travel demand. There is a general agreement that travel demand is affected by land use patterns. However, traditional aggregate four-step models, which are the prevailing modeling approach presently, assume that traffic condition will not affect people's decision on whether to make a trip or not when trip generation is estimated. Existing survey data indicate, however, that differences exist in trip rates for different geographic areas. The reasons for such differences have not been carefully studied, and the success of quantifying the influence of land use on travel demand beyond employment, households, and their characteristics has been limited to be useful to the traditional four-step models. There may be a number of reasons, such as that the representation of influence of land use on travel demand is aggregated and is not explicit and that land use variables such as density and mix and accessibility as measured by travel time and congestion have not been adequately considered. This research employs the artificial neural network technique to investigate the potential effects of land use and accessibility on trip productions. Sixty two variables that may potentially influence trip production are studied. These variables include demographic, socioeconomic, land use and accessibility variables. Different architectures of ANN models are tested. Sensitivity analysis of the models shows that land use does have an effect on trip production, so does traffic condition. The ANN models are compared with linear regression models and cross-classification models using the same data. The results show that ANN models are better than the linear regression models and cross-classification models in terms of RMSE. Future work may focus on finding a representation of traffic condition with existing network data and population data which might be available when the variables are needed to in prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: (1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; (2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and (3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trend of green consumerism and increased standardization of environmental regulations has driven multinational corporations (MNCs) to seek standardization of environmental practices or at least seek to be associated with such behavior. In fact, many firms are seeking to free ride on this global green movement, without having the actual ecological footprint to substantiate their environmental claims. While scholars have articulated the benefits from such optimization of uniform global green operations, the challenges for MNCs to control and implement such operations are understudied. For firms to translate environmental commitment to actual performance, the obstacles are substantial, particularly for the MNC. This is attributed to headquarters' (HQ) control challenges (1) in managing core elements of the corporate environmental management (CEM) process and specifically matching verbal commitment and policy with ecological performance and by (2) the fact that the MNC operates in multiple markets and the HQ is required to implement policy across complex subsidiary networks consisting of diverse and distant units. Drawing from the literature on HQ challenges of MNC management and control, this study examines (1) how core components of the CEM process impact optimization of global environmental performance (GEP) and then uses network theory to examine how (2) a subsidiary network's dimensions can present challenges to the implementation of green management policies. It presents a framework for CEM which includes (1) MNCs' Verbal environmental commitment, (2) green policy Management which guides standards for operations, (3) actual environmental Performance reflected in a firm's ecological footprint and (4) corporate environmental Reputation (VMPR). Then it explains how an MNC's key subsidiary network dimensions (density, diversity, and dispersion) create challenges that hinder the relationship between green policy management and actual environmental performance. It combines content analysis, multiple regression, and post-hoc hierarchal cluster analysis to study US manufacturing MNCs. The findings support a positive significant effect of verbal environmental commitment and green policy management on actual global environmental performance and environmental reputation, as well as a direct impact of verbal environmental commitment on green policy management. Unexpectedly, network dimensions were not found to moderate the relationship between green management policy and GEP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: 1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; 2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and 3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to analyze the network performance by observing the effect of varying network size and data link rate on one of the most commonly found network configurations. Computer networks have been growing explosively. Networking is used in every aspect of business, including advertising, production, shipping, planning, billing, and accounting. Communication takes place through networks that form the basis of transfer of information. The number and type of components may vary from network to network depending on several factors such as requirement and actual physical placement of the networks. There is no fixed size of the networks and they can be very small consisting of say five to six nodes or very large consisting of over two thousand nodes. The varying network sizes make it very important to study the network performance so as to be able to predict the functioning and the suitability of the network. The findings demonstrated that the network performance parameters such as global delay, load, router processor utilization, router processor delay, etc. are affected. The findings demonstrated that the network performance parameters such as global delay, load, router processor utilization, router processor delay, etc. are affected significantly due to the increase in the size of the network and that there exists a correlation between the various parameters and the size of the network. These variations are not only dependent on the magnitude of the change in the actual physical area of the network but also on the data link rate used to connect the various components of the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements This work was supported by NSFC (41371298 and 41371300), Ministry of Science and Technology (2013GB23600666 and 2013BAD11B00), and Ministry of Education of China (20120097130003). The international cooperation was funded under a “111” project by the State Agency of Foreign Expert Affairs of China and jointly supported under a grant for Priority Disciplines in Higher Education by the Department of Education, Jiangsu Province, China; The work was also a contribution to the cooperation project of “Estimates of Future Agricultural GHG Emissions and Mitigation in China” under the UK-China Sustainable Agriculture Innovation Network (SAIN). Pete Smith contributed to this work under a UK BBSRC China Partnership Award.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for overcoming the language and culture barriers to participation in MOOCs is reported. It is hypothesised that the juxtaposition of English as the language of instruction, used for interacting with course materials, and one’s preferred language as the language of participation, used for interaction with peers and facilitators, is preferable to ‘English only’ for participation in a MOOC. The HANDSON MOOC included seven teams of facilitators, each catering for a different language community. Facilitators were responsible for promoting active participation and peer tutoring. Comparing language groups revealed a series of predictors of intention to learn, some of which became apparent in the first days of the MOOC already. The comparison also uncovered four critical factors that influence participation: facilitation, language of participation, group size, and a pre-existing sense of community. Especially crucial was reaching a sufficient number of active participants during the first week. We conclude that multilingual facilitation activates participation in MOOCs in various ways; and that synergy between the four aforementioned factors is critical for the formation of the learning network that supports a social dynamics of active participation. Our approach suggests future targets for the development of the multilingual and community potential of MOOCs.