940 resultados para myogenic regulatory protein


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The opportunistic human pathogen Pseudomonas aeruginosa produces a variety of virulence factors, including exotoxin A, elastase, alkaline protease, alginate, phospholipases, and extracellular rhamnolipids. The previously characterized rhlABR gene cluster encodes a regulatory protein (RhlR) and a rhamnosyltransferase (RhlAB), both of which are required for rhamnolipid synthesis. Another gene, rhII, has now been identified downstream of the rhlABR gene cluster. The putative RhlI protein shares significant sequence similarity with bacterial autoinducer synthetases of the LuxI type. A P. aeruginosa rhlI mutant strain carrying a disrupted rhlI gene was unable to produce rhamnolipids and lacked rhamnosyltransferase activity. Rhamnolipid synthesis was restored by introducing a wild-type rhlI gene into such strains or, alternatively, by adding either the cell-free spent supernatant from a P. aeruginosa wild-type strain or synthetic N-acylhomoserine lactones. Half-maximal induction of rhamnolipid synthesis in the rhlI mutant strain required 0.5 microM N-butyrylhomoserine lactone or 10 microM N-(3-oxohexanoyl)homoserine lactone. The P. aeruginosa rhlA promoter was active in the heterologous host Pseudomonas putida when both the rhlR and rhlI genes were present or when the rhlR gene alone was supplied together with synthetic N-acylhomoserine lactones. The RhlR-RhlI regulatory system was found to be essential for the production of elastase as well, and cross-communication between the RhlR-RhlI rhamnolipid regulatory system and the LasR-LasI elastase regulatory system was demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O exossomo é um complexo multiproteico conservado evolutivamente de archaea a eucariotos superiores que desempenha funções celulares essenciais tais como: atividade exoribonucleolítica 3\'→5\', regulação dos níveis de mRNA, maturação de RNAs estruturais e controle de qualidade de RNAs durante os vários estágios do mecanismo de expressão gênica. Em Archaea, o exossomo é composto por até quatro subunidades diferentes, duas com domínios de RNase PH, aRrp41 e aRrp42, e duas com domínios de ligação a RNAs, aCsl4 e aRrp4. Três cópias das proteínas aRrp4 e/ou aCsl4 se associam com o núcleo hexamérico catalítico do anel de RNase PH e completam a formação do complexo. A proteína PaNip7 é um cofator de regulação do exossomo da archaea Pyrococcus abyssi e atua na inibição do complexo enzimático ligando-se simultaneamente ao exossomo e a RNAs. Neste projeto, a reconstituição in vitro do exossomo da archaea Pyrococcus abyssi formado pela proteína de topo PaCsl4 foi obtida. Para tanto foram realizadas análises de interação proteica usando as técnicas de cromatografia de afinidade, gel filtração e SDS-PAGE. Em adição à formação da isoforma PaCsl4-exossomo, um fragmento peptídico correspondente à região C-terminal da PaNip7 foi sintetizado pelo método da fase sólida, purificado por RP-HPLC e o purificado foi caracterizado por LC/ESI-MS almejando realizar futuros experimentos de interação com o exossomo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hox genes are essential for the patterning of the axial skeleton. Hox group 10 has been shown to specify the lumbar domain by setting a rib-inhibiting program in the presomitic mesoderm (PSM). We have now produced mice with ribs in every vertebra by ectopically expressing Hox group 6 in the PSM, indicating that Hox genes are also able to specify the thoracic domain. We show that the information provided by Hox genes to specify rib-containing and rib-less areas is first interpreted in the myotome through the regional-specific control of Myf5 and Myf6 expression. This information is then transmitted to the sclerotome by a system that includes FGF and PDGF signaling to produce vertebrae with or without ribs at different axial levels. Our findings offer a new perspective of how Hox genes produce global patterns in the axial skeleton and support a redundant nonmyogenic role of Myf5 and Myf6 in rib formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor alpha(TNF alpha) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNF alpha is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor ( SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasma membrane, and we investigated a possible role for lipid rafts in TNF alpha trafficking and secretion. TNF alpha surface delivery and secretion were found to be cholesterol-dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasma membrane, particularly on filopodia. Imaging the early stages of TNF alpha surface distribution revealed these puncta to be the initial points of TNF alpha delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol-dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

More than fifteen years following the description of Tat as a critical HIV gene expression regulatory protein, additional roles for Tat in HIV replication have been described, including reverse transcription. Tat achieves function through direct interaction with viral proteins, including reverse transcriptase, and numerous cellular proteins including cyclin T1, RNA polymerase 11, protein kinase R (PKR), p300/CBP, and P/CAF. Despite our advanced knowledge of how Tat operates, this has not yet resulted in the discovery of effective agents capable of targeting various Tat functions. Nevertheless, Tat remains an attractive, virus-specific molecule and detailed understanding of specific protein interaction holds promise for future drug discovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work presented in this thesis was undertaken to increase understanding of the intracellular mechanisms regulating acid secretion by gastric parietal cells. Investigation of the effects of protein kinase C on secretory activity induced by a variety of agents was a major objective. A further aim was to establish the sites at which epidermal growth factor (EGF) acts to stimulate prostaglandin E2 (PGE2) production and to inhibit acid secretion. These investigations were carried out by using the HGT-1 human gastric cancer cell line and freshly isolated rat parietal cells. In HGT-1 cells, the cyclic AMP response to histamine and to truncated glucagon-like peptide 1 (TGLP-1) was reduced when protein kinase C was activated by 12-0-tetradecanoylphorbol 13-acetate (TPA). Receptor-binding studies and experiments in which cyclic AMP production in HGT-1 cells was stimulated by gastric inhibitory polypeptide, cholera toxin and forskolin suggested that the effect of TPA was mediated by uncoupling of the histamine H2 receptor from the guanine nucleotide regulatory protein Gs, possibly by phosphorylation of the receptor. An involvement of protein kinase C α in this effect was suggested because an antibody to this isoform specifically prevented the inhibitory effects of TPA on histamine-stimulated adenylate cyclase activity in a membrane fraction prepared from HGT-1 cells. Carbachol-stimulated secretory activity in parietal cells was specifically inhibited by Ro 31-8220, a bisindolylmaleimide inhibitor of protein kinase C. Thus protein kinase C may play a role in the activation of the secretory response to carbachol. In parietal cells prelabelled with [3H]-arachidonic acid or [3H]myristic acid, EGF did not affect [3H]-fatty acid or [3H] - diacylglycerol content. No evidence for effects of EGF on phosphatidylinositol glycan-specific phospholipase C, phospholipase A2 or on low Km cyclic AMP phosphodiesterase activities were found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets.

In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention.

I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release.

Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways.

Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intestinal tract is exposed to a large variety of antigens such as food proteins, commensal bacteria and pathogens and contains one of the largest arms of the immune system. The intestinal immune system has to discriminate between harmless and harmful antigens, inducing tolerance to harmless antigens and active immunity towards pathogens and other harmful materials. Dendritic cells (DC) in the mucosal lamina propria (LP) are central to this process, as they sample bacteria from the local environment and constitutively migrate to the draining mesenteric lymph nodes (MLN), where they present antigen to naïve T cells in order to direct an appropriate immune response. Despite their crucial role, understanding the function and phenotype of LP DC has been hampered by the fact that they share phenotypic markers with macrophages (mφ), which are the dominant population of mononuclear phagocyte (MP) in the LP. Recent work in our own and other laboratories has established gating strategies and phenotyping panels that allow precise discrimination between intestinal DC and mφ using the mφ specific markers CD64 and F4/80. In this way four bona fide DC subsets with distinct functions have been identified in adult LP based on their expression of CD11b and CD103 and a major aim of my project was to understand how these subsets might develop in the neonatal intestine. At the beginning of my PhD, the laboratory had used these new methods to show that signal regulatory protein α (SIRPα), an inhibitory receptor expressed by myeloid cells, was expressed by mφ and most DC in the intestine, except for those expressing CD103 alone. In addition, mice carrying a non-signalling mutation in SIRPα (SIRPα mt) had a selective reduction in CD103+CD11b+ DC, a subset which is unique to the intestinal LP. This was the basis for the initial experiments of my project, described in Chapter 3, where I investigated if the phenotype in SIRPα mt mice was intrinsic to haematopoietic cells or not. To explore this, I generated bone marrow (BM) chimeric mice by reconstituting irradiated WT mice with SIRPα mt BM, or SIRPα mt animals with WT BM. These experiments suggested that the defect in CD103+CD11b+ DC was not replicated in DC derived from BM of SIRPα origin. However as this seemed inconsistent with other data, I considered the possibility that 18 the phenotype may have been lost with age, as the BM chimeric mice were considerably older than those used in the original studies of SIRPα function. However a comparison of DC subsets in the intestine of WT and SIRPα mt mice as they aged provided no conclusive evidence to support this idea. As these experiments did show age-dependent effects on DC subsets, in Chapter 4, I went on to investigate how the DC populations appeared in the intestine and other tissues in the neonatal period. These experiments showed there were few CD103+CD11b+ DC present in the LP and migratory DC compartment of the MLN in the neonate and that as this population gradually increased in proportion with age, there was a reciprocal decrease in the relative proportion of CD103-CD11b+ DC. Interestingly, most of the changes in DC numbers in the intestine were found during the second or third week of life when the weaning process began. To validate my findings that there were few CD103+CD11b+ DC in the neonate and that this was not merely an absence of CD103 upregulation, I examined the expression of CD101 and Trem-1, markers that other work in the laboratory had suggested were specific to the CD103+CD11b+ DC lineage. My work showed that CD101 and Trem-1 were co- expressed by most CD103+CD11b+ DC in small intestine (SI) LP, as well as a small subset of CD103-CD11b+ DC in this tissue. Interestingly, Trem-1 was highly specific to the SI LP and migratory DC in the MLN, but absent from the colon and other tissues. CD101 expression was also only found on CD11b+ DC, but showed a less restricted pattern of distribution, being found in several tissues as well as the SI LP. The relative timing of their development suggested there might be a relationship between CD103+CD11b+ and CD103-CD11b+ DC and this was supported by microarray analysis. I hypothesised that the CD103-CD11b+ DC that co-expressed CD101 and Trem-1 may be the cells that developed into CD103+CD11b+ DC. To investigate this I analysed how CD101 and Trem-1 expression changed with age amongst the DC subsets in SI LP, colonic LP (CLP) and MLN. The proportion of CD101+Trem-1+ cells increased amongst CD103+CD11b+ DC in the SI LP and MLN with age, while amongst CD103+CD11b+ DC in the CLP this decreased. This was not the same in CD103-CD11b+ DC, where CD101 and Trem-1 expression was more varied with age in all tissues. CD101 and Trem-1 were not expressed to any great extent on CD103+CD11b- or CD103-CD11b- DC. The phenotypic development of the 19 intestinal DC subsets was paralleled by the gradual upregulation of CD103 expression, while the production of retinoic acid (RA), as assessed by the AldefluorTM assay, was low early in life and did not attain adult levels until after weaning. Thus DC in the neonatal intestine take some time to acquire the adult pattern of phenotypic subsets and are functionally immature compared with their adult counterparts. In Chapter 5, I used CD101 and Trem-1 to explore the ontogeny of intestinal DC subsets in CCR2-/- and SIRPα mt mice, both of which have selective defects in one particular group of DC. The selective defect seen amongst CD103+CD11b+ DC in adult SIRPα mt mice was more profound in mice at D7 and D14 of age, indicating that it may be intrinsic to this population and not highly dependent on environmental factors that change after birth. The expression of CD101 and Trem-1 by both CD103+CD11b+ and CD103-CD11b+ DC was reduced in SIRPα mt mice, again indicating that this entire lineage was affected by the lack of SIRPα signalling. However there was also a generalised defect in the numbers of all DC subsets in many tissues from early in life, suggesting there was compromised development, recruitment or survival of DC in the absence of SIRPα signalling. In contrast to the findings in SIRPα mt mice, more CD103+CD11b+ DC co-expressed CD101 and Trem-1 in CCR2-/- mice, while there were no differences in the expression of these molecules amongst CD103-CD11b+ DC. This may suggest that CCR2+ CD103-CD11b+ DC are not the cells that express CD101 and Trem-1 that are predicted to be the direct precursors of CD103+CD11b+ DC. I also examined the expression of DC growth factor receptors on DC subsets from mice of different ages, but no clear age or subset- related patterns of the expression of mRNA for Csf2ra, Irf4, Tgfbr1 and Rara could be observed. Next, I investigated whether Trem-1 played any role in DC development. Preliminary experiments in Trem-1-/- mice show no differences between any of the DC subsets, nor were there any selective effects on individual subsets when DC development from Trem-1-/- KO and WT BM was compared in competitive chimeras. However these experiments were difficult to interpret due to viability problems and because I found an unexpected defect in the ability of Trem-1-/- BM to generate all DC, irrespective of whether they expressed Trem-1 or not. 20 The final experiments I carried out were to examine the role of the microbiota in driving the differentiation of intestinal DC subsets, based on the hypothesis that this could be one of the environmental factors that might influence events in the developing intestine. To this end I performed experiments in both antibiotic treated and germ free adult mice, both of which showed no significant phenotypic differences amongst any of the DC subsets. However the study of germ free mice was compromised by recent contamination of the colony and may not be the conclusive answer. Together the data in this thesis have shown that the population of CD103+CD11b+ DC, which is unique to the intestine, is not present at birth. These cells gradually increase in frequency over time and as this occurs there is a reciprocal decrease in the frequency of CD103-CD11b+ DC. Along with other results, this leads to the idea that there may be a linear developmental pathway from CD103-CD11b+ DC to CD103+CD11b+ DC that is driven by non-microbial factors that are located preferentially in the small intestine. My project indicates that markers such as CD101 and Trem-1 may assist the dissection of this process and highlights the importance of the neonatal period for these events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 78-kDa glucose-regulated protein (GRP78) is ubiquitously expressed in many cell types. Its promoter contains multiple protein-binding sites and functional elements. In this study we examined a high affinity protein-binding site spanning bp -198 to -180 of the rat grp78 promoter, using nuclear extracts from both B-lymphoid and HeLa cells. This region contains a sequence TGACGTGA which, with the exception of one base, is identical to the cAMP-response element (CRE). Site-directed mutagenesis reveals that this sequence functions as a major basal level regulatory element in hamster fibroblast cells and is also necessary to maintain high promoter activity under stress-induced conditions. By gel mobility shift analysis, we detect two specific protein complexes. The major specific complex I, while immunologically distinct from the 42-kDa CRE-binding protein (CREB), binds most strongly to the grp site, but also exhibits affinity for the CRE consensus sequence. As such, complex I may consist of other members of the CREB/activating transcription factor protein family. The minor specific complex II consists of CREB or a protein antigenically related to it. A nonspecific complex III consists of the Ku autoantigen, an abundant 70- to 80-kDa protein complex in HeLa nuclear extracts. By cotransfection experiments, we demonstrate that in F9 teratocarcinoma cells, the grp78 promoter can be transactivated by the phosphorylated CREB or when the CREB-transfected cells are treated with the calcium ionophore A23187. The differential regulation of the grp78 gene by cAMP in specific cell types and tissues is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in an hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main precursor of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homestasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.