957 resultados para mutiferroics, iron oxides, ferroelectrics, ferrimagnets, thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon (a‐Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a‐Si:H from SQWM rf discharges through their influence on powder particle formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, (011)-highly oriented Sr, Nb co-doped BiFeO3 (BFO) thin films were successfully grown on SrRuO3/Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of 5.3 nm and average grain sizes of 65-70 nm for samples with different thicknesses. Remanent polarization values (2Pr) of 54 lC cm 2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe3þ/Fe2þ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/ SrRuO3/Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron energy-loss spectroscopy is used to map composition and electronic states in epitaxial La2/3Ca1/3MnO3 films grown on SrTiO3 001 and 110 substrates. It is found that in partially relaxed 110 films cationic composition and valence state of Mn3+/4+ ions are preserved across the film thickness. In contrast, in fully strained 001 films, the Ca/La ratio gradually changes across the film, being La rich at film/substrate interface and La depleted at free surface; Mn valence state changes accordingly. These observations suggest that a strongly orientation-dependent adaptative composition mechanism dominates stress accommodation in manganite films and provides microscopic understanding of their dissimilar magnetic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi1.5Zn1Nb1.5O7 (BZN) epitaxial thin films were grown by pulsed laser deposition on Al2O3 with a double ZnO buffer layer through domain matching epitaxy (DME) mechanism. The pole figure analysis and reciprocal space mapping revealed the single crystalline nature of the thin film. The pole figure analysis also shows a 60º twinning for the (222) oriented crystals. Sharp intense spots in the SAED pattern also indicate the high crystalline nature of BZN thin film. The Fourier filtered HRTEM images of the BZN-ZnO interface confirms the domain matched epitaxy of BZN with ZnO buffer. An electric field dependent dielectric tunability of 68% was obtained for the BZN thin films with inter digital capacitors patterned over the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, preliminary results of the use of hydrophobic thin films obtained by plasma deposition to protect grains and seeds are presented: grains coated by the films did not present biological degradation when stored in a saturated water vapor environment, but had their germination accelerated in the presence of water. A model that explains the difference of behavior of the films when exposed to water in vapor form or in liquid form, based on the formation of microchannels within the film that lead to water uptake in seeds, is presented. The model was successfully tested using quartz crystal measurements, which showed that the microchannels within the films can favor the adsorption and permeation of water when the films are immersed in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: Magnetic Perovskites Sr2FeMoO6 and La(1-x)Ca(x)MnO3: Synthesis, Fabrication and Characterization of Nanosized Powders and Thin Films

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates the adsorption of Alizarin, Eriochrome Blue Black R and Fluorescein using chitosan, goethite and magnetite as adsorbents. For Alizarin, the best adsorbent is chitosan with a Langmuir parameter of 15.8 mmol dye/g adsorbent. For Eriochrome Blue Black R only 1.94 mmol dye/g chitosan is adsorbed. Langmuir parameters for the Alizarin adsorption on both iron oxides display one or two orders of magnitude lower than for chitosan and two orders of magnitude lower in the case of Eriochrome Blue Black R. Fluorescein does not adsorb in appreciable amounts on chitosan and it presents the lower affinity on the iron oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic nanoparticles are very important in modern industry. These particles are used in many different spheres of life. Nanoparticles have unusual physical and chemical properties connected both with quantum dimensional effects and with the increased role of the surface atoms. Most clearly the difference between the properties of bulk materials and nanoparticles can be seen in the magnetic properties of these materials. The most typical magnetic properties of nanomaterials are superparamagnetism with the size of the cluster from 1 to 10 nm; single-domain magnetic state of nanoclusters and nanostructures up to 20 nm; magnetization processes connected with magnetic cluster ordering and with its forms and sizes; quantum magnetic tunneling effects when magnetization changes by jumps and giant magnetoresistance effects. For research of the magnetic properties of iron-containing nanostructures, it is convenient to apply Mӧssbauer spectroscopy. In this work a number of nano-sized samples of iron oxides were examined by Mössbauer spectroscopy. The Mössbauer spectra of nanoparticles with various sizes were obtained. Mössbauer spectra of iron oxide nanoparticles were compared with the spectra of bulk samples. It was shown how the spectra of iron oxide nanoparticles change depending on the particle sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dewatering of iron ore concentrates requires large capacity in addition to producing a cake with low moisture content. Such large processes are commonly energy intensive and means to lower the specific energy consumption are needed. Ceramic capillary action disc filters incorporate a novel filter medium enabling the harnessing of capillary action, which results in decreased energy consumption in comparison to traditional filtration technologies. As another benefit, the filter medium is mechanically and chemically more durable than, for example, filter cloths and can, thus, withstand harsh operating conditions and possible regeneration better than other types of filter media. In iron ore dewatering, the regeneration of the filter medium is done through a combination of several techniques: (1) backwashing, (2) ultrasonic cleaning, and (3) acid regeneration. Although it is commonly acknowledged that the filter medium is affected by slurry particles and extraneous compounds, published research, especially in the field of dewatering of mineral concentrates, is scarce. Whereas the regenerative effect of backwashing and ultrasound are more or less mechanical, regeneration with acids is based on chemistry. The chemistry behind the acid regeneration is, naturally, dissolution. The dissolution of iron oxide particles has been extensively studied over several decades but those studies may not necessarily be directly applicable in the regeneration of the filter medium which has undergone interactions with the slurry components. The aim of this thesis was to investigate if free particle dissolution indeed correlates with the regeneration of the filter medium. For this purpose, both free particle dissolution and dissolution of surface adhered particles were studied. The focus was on acidic dissolution of iron oxide particles and on the study of the ceramic filter medium used in the dewatering of iron ore concentrates. The free particle dissolution experiments show that the solubility of synthetic fine grained iron oxide particles in oxalic acid could be explained through linear models accounting for the effects of temperature and acid concentration, whereas the dissolution of a natural magnetite is not so easily explained by such models. In addition, the kinetic experiments performed both support and contradict the work of previous authors: the suitable kinetic model here supports previous research suggesting solid state reduction to be the reaction mechanism of hematite dissolution but the formation of a stable iron oxalate is not supported by the results of this research. Several other dissolution mechanisms have also been suggested for iron oxide dissolution in oxalic acid, indicating that the details of oxalate promoted reductive dissolution are not yet agreed and, in this respect, this research offers added value to the community. The results of the regeneration experiments with the ceramic filter media show that oxalic acid is highly effective in removing iron oxide particles from the surface of the filter medium. The dissolution of those particles did not, however, exhibit the expected behaviour, i.e. complete dissolution. The results of this thesis show that although the regeneration of the ceramic filter medium with acids incorporates the dissolution of slurry particles from the surface of the filter medium, the regeneration cannot be assessed purely based upon free particle dissolution. A steady state, dependent on temperature and on the acid concentration, was observed in the dissolution of particles from the surface even though the limit of solubility of free iron oxide particles had not been reached. Both the regeneration capacity and efficiency, with regards to the removal of iron oxide particles, was found to be temperature dependent, but was not affected by the acid concentration. This observation further suggests that the removal of the surface adhered particles does not follow the dissolution of free particles, which do exhibit a dependency on the acid concentration. In addition, changes in the permeability and in the pore structure of the filter medium were still observed after the bulk concentration of dissolved iron had reached a steady state. Consequently, the regeneration of the filter medium continued after the dissolution of particles from the surface had ceased. This observation suggests that internal changes take place at the final stages of regeneration. The regeneration process could, in theory, be divided into two, possibly overlapping, stages: (1) dissolution of surface-adhered particles, and (2) dissolution of extraneous compounds from within the pore structure. In addition to the fundamental knowledge generated during this thesis, tools to assess the effects of parameters on the regeneration of the ceramic filter medium are needed. It has become clear that the same tools used to estimate the dissolution of free particles cannot be used to estimate the regeneration of a filter medium unless only a robust characterisation of the order of regeneration efficiency is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.