968 resultados para multiple locus sequence typing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in solute carrier family 26 (sulfate transporter), member 2 (SLC26A2) gene result in a spectrum of autosomal recessive chondrodysplasias that range from the mildest recessive form of multiple epiphysial dysplasia (rMED) through the most common diastrophic dysplasia (DTD) to lethal atelosteogenesis type II and achondrogenesis IB. The clinical variability has been ascribed to quantitative effect of mutations of the sulfate transporter activity. Here we describe two Brazilian sisters, born to healthy and non consanguineous parents, with Robin sequence, mild shortening of upper and lower limbs, brachymetacarpalia/tarsalia, additional and accelerated carpal ossification, marked genu valgum, and multiple epiphysial dysplasia. This phenotype was intermediate between DTD and rMED, and both girls have a compound heterozygous mutations for the SLC26A2, a Finnish founder mutation (c.-26?+?2T>C), and R279W. This combination of mutations has been observed in individuals with different phenotypes, including DTD, DTD variant, and rMED. The distinct phenotype of our cases reinforces the hypothesis that other factors may be influencing the phenotype as previously suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive genetic screening. We applied this approach to UCDs and combined it with the use of DNA bar codes for more cost-effective, parallel analyses of multiple samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza x Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele a(t), which is recessive to the wild-type allele A. Toward positional cloning of the a(t) mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5' untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The a(t) mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression pattern.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA for this study was collected from a sample of 133 retinitis pigmentosa (RP) patients and the rhodopsin locus molecularly analyzed by linkage and for disease specific mutations. The cohort of patients consisted of 85 individuals diagnosed with autosomal dominant RP (adRP), and 48 patients representing other forms of retinitis pigmentosa or retinal dystrophy related disease. In three large families with adRP rhodopsin was excluded from linkage to the disease locus. A search for subtle mutations in the rhodopsin coding region using single strand conformational polymorphisms (SSCP) and sequencing detected a total of 14 unique sequence variants in 24 unrelated patients. These variants included one splicing variant, 5168 -1G-A, one deletion variant of 17 base pairs causing a frame shift at codon 332, and 12 misense variants: Pro23His, Leu46Arg, Gly106Trp, Arg135Pro, Pro171Glu, Pro180Ala, Glu181Lys, Asp190Asn, His211Arg, Ser270Arg, Leu328Pro and Pro347Thr. All but three of the missense variants change amino acids that are evolutionarily conserved. The Pro23His mutation was found in 10 unrelated individuals with family histories of adRP and not in any normal controls (over 80 chromosomes tested). The Pro180Ala mutation was present in a patient with simplex RP and probably represents a new mutation. Three normal polymorphic nucleotide substitutions, A-269-G, T-3982-C, and G-5145-A, were also identified. We conclude, based on this study, that 25% of adRP cases are attributable to rhodopsin mutations.^ Clinical data, including ERG results and visual field testing, was available for patients with eleven different mutations. The eleven patients were all diagnosed with RP, however the severity of the disease varied with five patients mildly affected and diagnosed with type II adRP and 5 patients severely affected and diagnosed with type I adRP. The patient with simplex RP was mildly affected. The location of the mutations within the rhodopsin protein was randomly associated with the severity of the disease in those patients evaluated. However, four mutations, Pro23His, Leu46Arg, Pro347Thr, and 5168 -1G-A, are particularly interesting. The Pro23His mutation appears to have radiated from a recent common ancestor of the affected patients as all of them share a common haplotype at the rhodopsin locus. The Leu46Arg mutation causes an unusually severe form of RP. Hydropathy analysis of the mutated sequence revealed a marked change in the hydrophobicity of this first transmembrane spanning region. Codon 347 has been the target of multiple mutations with at least six documented changes at the position, significantly more than expected by a random distribution of mutations. Finally the splice-site variant is extremely variable in its expression in the family studied. Similar mutations have been reported in other cases of adRP and postulated to be involved in autosomal recessive RP (arRP). Mechanisms to account for the variable expression of rhodopsin mutations in relation to RP heterogeneity are discussed. (Abstract shortened by UMI.) ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sequence analysis and optimal matching are useful heuristic tools for the descriptive analysis of heterogeneous individual pathways such as educational careers, job sequences or patterns of family formation. However, to date it remains unclear how to handle the inevitable problems caused by missing values with regard to such analysis. Multiple Imputation (MI) offers a possible solution for this problem but it has not been tested in the context of sequence analysis. Against this background, we contribute to the literature by assessing the potential of MI in the context of sequence analyses using an empirical example. Methodologically, we draw upon the work of Brendan Halpin and extend it to additional types of missing value patterns. Our empirical case is a sequence analysis of panel data with substantial attrition that examines the typical patterns and the persistence of sex segregation in school-to-work transitions in Switzerland. The preliminary results indicate that MI is a valuable methodology for handling missing values due to panel mortality in the context of sequence analysis. MI is especially useful in facilitating a sound interpretation of the resulting sequence types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND The copy number variation (CNV) in beta-defensin genes (DEFB) on human chromosome 8p23 has been proposed to contribute to the phenotypic differences in inflammatory diseases. However, determination of exact DEFB CN is a major challenge in association studies. Quantitative real-time PCR (qPCR), paralog ratio tests (PRT) and multiplex ligation-dependent probe amplification (MLPA) have been extensively used to determine DEFB CN in different laboratories, but inter-method inconsistencies were observed frequently. In this study we asked which one is superior among the three methods for DEFB CN determination. RESULTS We developed a clustering approach for MLPA and PRT to statistically correlate data from a single experiment. Then we compared qPCR, a newly designed PRT and MLPA for DEFB CN determination in 285 DNA samples. We found MLPA had the best convergence and clustering results of the raw data and the highest call rate. In addition, the concordance rates between MLPA or PRT and qPCR (32.12% and 37.99%, respectively) were unacceptably low with underestimated CN by qPCR. Concordance rate between MLPA and PRT (90.52%) was high but PRT systematically underestimated CN by one in a subset of samples. In these samples a sequence variant which caused complete PCR dropout of the respective DEFB cluster copies was found in one primer binding site of one of the targeted paralogous pseudogenes. CONCLUSION MLPA is superior to PRT and even more to qPCR for DEFB CN determination. Although the applied PRT provides in most cases reliable results, such a test is particularly sensitive to low-frequency sequence variations preferably accumulating in loci like pseudogenes which are most likely not under selective pressure. In the light of the superior performance of multiplex assays, the drawbacks of such single PRTs could be overcome by combining more test markers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple-complete-digest mapping is a DNA mapping technique based on complete-restriction-digest fingerprints of a set of clones that provides highly redundant coverage of the mapping target. The maps assembled from these fingerprints order both the clones and the restriction fragments. Maps are coordinated across three enzymes in the examples presented. Starting with yeast artificial chromosome contigs from the 7q31.3 and 7p14 regions of the human genome, we have produced cosmid-based maps spanning more than one million base pairs. Each yeast artificial chromosome is first subcloned into cosmids at a redundancy of ×15–30. Complete-digest fragments are electrophoresed on agarose gels, poststained, and imaged on a fluorescent scanner. Aberrant clones that are not representative of the underlying genome are rejected in the map construction process. Almost every restriction fragment is ordered, allowing selection of minimal tiling paths with clone-to-clone overlaps of only a few thousand base pairs. These maps demonstrate the practicality of applying the experimental and software-based steps in multiple-complete-digest mapping to a target of significant size and complexity. We present evidence that the maps are sufficiently accurate to validate both the clones selected for sequencing and the sequence assemblies obtained once these clones have been sequenced by a “shotgun” method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Translocations involving c-myc and an Ig locus have been reported rarely in human multiple myeloma (MM). Using specific fluorescence in situ hybridization probes, we show complex karyotypic abnormalities of the c-myc or L-myc locus in 19 of 20 MM cell lines and approximately 50% of advanced primary MM tumors. These abnormalities include unusual and complex translocations and insertions that often juxtapose myc with an IgH or IgL locus. For two advanced primary MM tumors, some tumor cells contain a karyotypic abnormality of the c-myc locus, whereas other tumor cells do not, indicating that this karyotypic abnormality of c-myc occurs as a late event. All informative MM cell lines show monoallelic expression of c-myc. For Burkitt's lymphoma and mouse plasmacytoma tumors, balanced translocation that juxtaposes c-myc with one of the Ig loci is an early, invariant event that is mediated by B cell-specific DNA modification mechanisms. By contrast, for MM, dysregulation of c-myc apparently is caused principally by complex genomic rearrangements that occur during late stages of MM progression and do not involve B cell-specific DNA modification mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated λ phage infecting UV-preirradiated bacterial cells (termed λUTM for λ untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for λUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F′lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cell cycle-dependent, ordered assembly of protein prereplicative complexes suggests that eukaryotic replication origins determine when genomic replication initiates. By comparison, the factors that determine where replication initiates relative to the sites of prereplicative complex formation are not known. In the human globin gene locus previous work showed that replication initiates at a single site 5′ to the β-globin gene when protein synthesis is inhibited by emetine. The present study has examined the pattern of initiation around the genetically defined β-globin replicator in logarithmically growing HeLa cells, using two PCR-based nascent strand assays. In contrast to the pattern of initiation detected in emetine-treated cells, analysis of the short nascent strands at five positions spanning a 40 kb globin gene region shows that replication initiates at more than one site in non-drug-treated cells. Quantitation of nascent DNA chains confirmed that replication begins at several locations in this domain, including one near the initiation region (IR) identified in emetine-treated cells. However, the abundance of short nascent strands at another initiation site ∼20 kb upstream is ∼4-fold as great as that at the IR. The latter site abuts an early S phase replicating fragment previously defined at low resolution in logarithmically dividing cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By detailed NMR analysis of a human telomere repeating unit, d(CCCTAA), we have found that three distinct tetramers, each of which consists of four symmetric single-strands, slowly exchange in a slightly acidic solution. Our new finding is a novel i-motif topology (T-form) where T4 is intercalated between C1 and C2 of the other duplex. The other two tetramers have a topology where C1 is intercalated between C2 and C3 of the other parallel duplex, resulting in the non-stacking T4 residues (R-form), and a topology where C1 is stacked between C3 and T4 of the other duplex (S-form). From the NMR denaturation profile, the R-form is the most stable of the three structures in the temperature range of 15–50°C, the S-form the second and the T-form the least stable. The thermodynamic parameters indicate that the T-form is the most enthalpically driven and entropically opposed, and its population is increased with decreasing temperature. The T-form structure determined by restrained molecular dynamics calculation suggests that inter-strand van der Waals contacts in the narrow grooves should contribute to the enthalpic stabilization of the T-form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a new way to think about, and to construct, pairwise as well as multiple alignments of DNA and protein sequences is proposed. Rather than forcing alignments to either align single residues or to introduce gaps by defining an alignment as a path running right from the source up to the sink in the associated dot-matrix diagram, we propose to consider alignments as consistent equivalence relations defined on the set of all positions occurring in all sequences under consideration. We also propose constructing alignments from whole segments exhibiting highly significant overall similarity rather than by aligning individual residues. Consequently, we present an alignment algorithm that (i) is based on segment-to-segment comparison instead of the commonly used residue-to-residue comparison and which (ii) avoids the well-known difficulties concerning the choice of appropriate gap penalties: gaps are not treated explicity, but remain as those parts of the sequences that do not belong to any of the aligned segments. Finally, we discuss the application of our algorithm to two test examples and compare it with commonly used alignment methods. As a first example, we aligned a set of 11 DNA sequences coding for functional helix-loop-helix proteins. Though the sequences show only low overall similarity, our program correctly aligned all of the 11 functional sites, which was a unique result among the methods tested. As a by-product, the reading frames of the sequences were identified. Next, we aligned a set of ribonuclease H proteins and compared our results with alignments produced by other programs as reported by McClure et al. [McClure, M. A., Vasi, T. K. & Fitch, W. M. (1994) Mol. Biol. Evol. 11, 571-592]. Our program was one of the best scoring programs. However, in contrast to other methods, our protein alignments are independent of user-defined parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Integration of viral DNA into the host nuclear genome, although not unusual in bacterial and animal systems, has surprisingly not been reported for plants. We have discovered geminvirus-related DNA (GRD) sequences, in the form of distinct sets of multiple direct repeats comprising three related repeat classes, situated in a unique locus in the Nicotiana tabacum (tobacco) nuclear genome. The organization of these sequences is similar or identical in eight different tobacco cultivars we have examined. DNA sequence analysis reveals that each repeat has sequences most resembling those of the New World geminiviral DNA replication origin plus the adjacent AL1 gene, encoding the viral replication protein. We believe these GRD sequences originated quite recently in Nicotiana evolution through integration of geminiviral DNA by some combination of the processes of illegitimate recombination, amplification, deletions, and rearrangements. These events must have occurred in plant tissue that was subsequently able to contribute to meristematic tissue yielding gametes. GRD may have been retained in tobacco by selection or by random fixation in a small evolving population. Although we cannot detect transcription of these sequences, this does not exclude the possibility that they may originally have been expressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transmission of human immunodeficiency virus 1 (HIV-1) from an infected women to her offspring during gestation and delivery was found to be influenced by the infant's major histocompatibility complex class II DRB1 alleles. Forty-six HIV-infected infants and 63 seroreverting infants, born with passively acquired anti-HIV antibodies but not becoming detectably infected, were typed by an automated nucleotide-sequence-based technique that uses low-resolution PCR to select either the simpler Taq or the more demanding T7 sequencing chemistry. One or more DR13 alleles, including DRB1*1301, 1302, and 1303, were found in 31.7% of seroreverting infants and 15.2% of those becoming HIV-infected [OR (odds ratio) = 2.6 (95% confidence interval 1.0-6.8); P = 0.048]. This association was influenced by ethnicity, being seen more strongly among the 80 Black and Hispanic children [OR = 4.3 (1.2-16.4); P = 0.023], with the most pronounced effect among Black infants where 7 of 24 seroreverters inherited these alleles with none among 12 HIV-infected infants (Haldane OR = 12.3; P = 0.037). The previously recognized association of DR13 alleles with some situations of long-term nonprogression of HIV suggests that similar mechanisms may regulate both the occurrence of infection and disease progression after infection. Upon examining for residual associations, only only the DR2 allele DRB1*1501 was associated with seroreversion in Caucasoid infants (OR = 24; P = 0.004). Among Caucasoids the DRB1*03011 allele was positively associated with the occurrence of HIV infection (P = 0.03).