482 resultados para mosquito
Resumo:
Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i) the properties of Plasmodium signalling molecules, and ii) developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei) are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.
Resumo:
BACKGROUND Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. METHODS Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya. RESULTS Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported. CONCLUSIONS Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority.
Resumo:
Japanese encephalitis (JE) is one of the most dreaded mosquito-borne viral encephalitis known to afflict humans. The Japanese encephalitis virus (JEV) is a neurotropic flavivirus that affects the CNS, causing extensive damage that may lead to fatality in about one third of bpatients. Half of the survivors suffer from severe neuropshychiatric sequelae. With nearly 3 billion people living under the current JE-endemic region, recurring incidents of epidemic are being reported at regular intervals. With no established antiviral therapies against JE available, vaccination has been the only way of preventing JE. Two types of JE vaccines are currently in vogue although the safety of administering them is questionable, in certain individuals. Thus, there is a need to develop a safe, affordable and potent JE vaccine and this review addresses the current efforts in this direction. This review also focuses on the pathophysiology of JE and efforts towards a possible breakthrough in anti-JEV therapy.
Resumo:
Predation risk can strongly constrain how individuals use time and space. Grouping is known to reduce an individual's time investment in costly antipredator behaviours. Whether grouping might similarly provide a spatial release from antipredator behaviour and allow individuals to use risky habitat more and, thus, improve their access to resources is poorly known. We used mosquito larvae, Aedes aegypti, to test the hypothesis that grouping facilitates the use of high-risk habitat. We provided two habitats, one darker, low-risk and one lighter, high-risk, and measured the relative time spent in the latter by solitary larvae versus larvae in small groups. We tested larvae reared under different resource levels, and thus presumed to vary in body condition, because condition is known to influence risk taking. We also varied the degree of contrast in habitat structure. We predicted that individuals in groups should use high-risk habitat more than solitary individuals allowing for influences of body condition and contrast in habitat structure. Grouping strongly influenced the time spent in the high-risk habitat, but, contrary to our expectation, individuals in groups spent less time in the high-risk habitat than solitary individuals. Furthermore, solitary individuals considerably increased the proportion of time spent in the high-risk habitat over time, whereas individuals in groups did not. Both solitary individuals and those in groups showed a small increase over time in their use of riskier locations within each habitat. The differences between solitary individuals and those in groups held across all resource and contrast conditions. Grouping may, thus, carry a poorly understood cost of constraining habitat use. This cost may arise because movement traits important for maintaining group cohesion (a result of strong selection on grouping) can act to exaggerate an individual preference for low-risk habitat. Further research is needed to examine the interplay between grouping, individual movement and habitat use traits in environments heterogeneous in risk and resources. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Diking and holding water on salt marshes ("impounding" the marsh) is a management technique used on Merritt Island National Wildlife Refuge (MINWR) and elsewhere in the Southeast to: a) prevent the reproduction of saltmarsh mosquitos, and b) attract wintertering waterfowl and other marsh, shore, and wading birds. Because of concern that diking and holding water may interfere with the production of estuarine fish and shellfish, impoundment managers are being asked to consider altering management protocol to reduce or eliminate any such negative influence. How to change protocol and preserve effective mosquito control and wildlife management is a decision of great complexity because: a) the relationships between estuarine organisms and the fringing salt marshes at the land-water interface are complex, and b) impounded marshes are currently good habitat for a variety of species of fish and wildlife. Most data collection by scientists and managers in the area has not been focused on this particular problem. Furthermore, collection of needed data may not be possible before changes in protocol are demanded. Therefore, the purpose of this document is two-fold: 1) to suggest management alternatives, given existing information, and 2) to help identify research needs that have a high probability of leading to improved simultaneous management of mosquitos, waterfowl, other wildlife, freshwater fish, and estuarine fish and shellfish on the marshland of the Merritt Island National Wildlife Refuge. (92 page document)
Resumo:
Dr. Charles M. Breder participated on the 1934 expedition of the Atlantis from Woods Hole, Massachusetts to Panama and back and kept a field diary of daily activities. The Atlantis expedition of 1934, led by Prof. A. E. Parr, was a milestone in the history of scientific discovery in the Sargasso Sea and the West Indies. Although naturalists had visited the Sargasso Sea for many years, the Atlantis voyage was the first attempt to investigate in detailed quantitative manner biological problems about this varying, intermittent ‘false’ bottom of living, floating plants and associated fauna. In addition to Dr. Breder, the party also consisted of Dr. Alexander Forbes, Harvard University and Trustee of the Woods Hole Oceanographic Institution (WHOI); T. S. Greenwood, WHOI hydrographer; M. D. Burkenroad, Yale University’s Bingham Laboratory, carcinology and Sargasso epizoa; M. Bishop, Peabody Museum of Natural History, Zoology Dept., collections and preparations and H. Sears, WHOI ichthyologist. The itinerary included the following waypoints: Woods Hole, the Bermudas, Turks Islands, Kingston, Colon, along the Mosquito Bank off of Nicaragua, off the north coast of Jamaica, along the south coast of Cuba, Bartlett Deep, to off the Isle of Pines, through the Yucatan Channel, off Havana, off Key West, to Miami, to New York City, and then the return to Woods Hole. During the expedition, Breder collected rare and little-known flying fish species and developed a method for hatching and growing flying fish larvae. (PDF contains 48 pages)
Resumo:
Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.
Resumo:
A malária é uma doença infecciosa causada por protozoários do gênero Plasmodium, transmitidos ao homem, principalmente, através da picada do mosquito infectado. O tratamento é realizado por meio do uso de drogas, como a cloroquina, uma vez que não há vacina eficiente contra a doença. Porém, a resistência dos parasitos aos medicamentos tem levado à busca por novas substâncias com atividade antimalárica, inclusive de origem vegetal. Nesse contexto, o presente trabalho teve por objetivo avaliar a atividade antimalárica de extratos metanólicos de Norantea brasiliensis cultivada sob condições in vivo e in vitro, espécie nativa ocorrente em restingas, com potencial medicinal já comprovado para várias atividades. Foram desenvolvidos protocolos de calogênese e cultura de raízes da espécie visando à definição de um sistema de produção de metabólitos. Para a cultura in vitro, explantes foram inoculados em meio líquido e sólido contendo diferentes fitorreguladores e concentrações. A partir da cultura de tecidos, foram testados extratos do material produzido biotecnologicamente para comparação com o material botânico cultivado no campo. Os testes sobre o potencial antimalárico foram realizados in vivo, utilizando-se camundongos infectados pelo Plasmodium berghei ANKA, e in vitro utilizando o Plasmodium falciparum. Em seguida foram administrados a cloroquina e os extratos vegetais. A parasitemia foi observada seguindo os protocolos já estabelecidos pelo Laboratório de Imunofarmacologia do Instituto Oswaldo Cruz (IOC). Resultados mostraram que explantes foliares e caulinares de plantas germinadas in vitro, inoculados em meio sólido B5 suplementado com 2,0 mg.mL-1 de ANA, são as melhores fontes para a produção de raízes, apresentando maiores valores de peso fresco e peso seco, mostrando-se um sistema promissor para a produção in vitro de metabólitos da espécie. A avaliação da atividade antimalárica in vivo revelou seu potencial a partir de extrato de raízes de planta cultivada in vivo, na concentração de 50 mg/kg apresentando redução significativa da parasitemia quando comparada com o controle não tratado. Paralelamente, nos testes in vitro a concentração de 100 μg/kg do extrato de raízes de planta cultivada in vivo apresentou diferença significativa quando comparada com as outras concentrações testadas e o controle negativo. Além disso, há uma tendência de aumento do efeito inibitório conforme o aumento da concentração do extrato. Os resultados indicam o potencial de atividade antimalárica em raízes de N. brasiliensis, sendo este estudo o primeiro realizado para a espécie
Resumo:
Growth and mortality parameters of the small Lake Victoria cyprinid Rastrineobola argentea were determined from length-frequency analysis, using the ELEFAN I and II programs. The results of two sampling programs, both performed during 1988, one in Uganda (mosquito seine) and the other in Tanzania (pelagic trawl), were highly corresponding, In comparison with previously published data on the growth of dagaa and some similar species, low values for L sub( infinity ) (65 mm standard length) and K (1 year super(-1)) were found. Total mortality (Z) amounted to 3.9-4.4 year super(-1). A single annual breeding peak was observed both in Uganda (October/November) and in Tanzania (February/March).
Resumo:
The small cyprinid dagaa (Rastreneobola argentea) is the only indigenous species from Lake Victoria which still supports an important fishery after the population boom of the introduced Nile perch (Lates niloticus), while at the same time it is a major prey species of the perch. The observed life-history tactics and the shift from juvenile to adult exploitation mortality made dagaa a successful survivor in a disrupted ecosystem. Although the prospects for a sustainable fishery are good, the current increase in the use of mosquito seines is dangerous. Not only do mosquito seines yield a lower catch per unit of effort than alternative gear, but they also show a strong selection for juvenile dagaa.
Resumo:
The response of Chanos chanos fry to moving and stationary nets of different mesh size and colour, underwater visibility of the nets and water filtration were studied. Results indicate that milkfish fry may be driven by nets of mesh size larger than that presently used; larger mesh size decreases the net resistance in the water so that collectors may move the equipment easily. The large mesh nets should be of a dark colour, preferably black for effective driving; bowever white mosquito net is best for the core end, since the fry are more easily visible on a white background.
Resumo:
P>NF-kappa B is a B-cell specific transcription factor that plays crucial roles in inflammation, immunity, apoptosis, development and differentiation. In the present study, a novel NF-kappa B-like transcription factor Relish was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsRelish) by rapid amplification of cDNA ends (RACE) technique based on expressed sequence tag (EST). The full-length cDNA of EsRelish was of 5034 bp, consisting of a 5' untranslated region (UTR) of 57 bp, a 3' UTR of 1335 bp with two mRNA instability motifs (ATTTA), a polyadenylation signal sequence (AATAAA) and a poly (A) tail, and an open reading frame (ORF) of 3645 bp encoding a polypeptide of 1214 amino acids with a calculated molecular mass of 134.8 kDa and a theoretical isoelectric point of 5.26. There were a typical Rel homology domain (RHD), two nuclear localization signal (NLS) sequences (KR), an inhibitor kappa B (I kappa B)-like domain with six ankyrin repeats, a PEST region and a death domain in the deduced amino acid sequence of EsRelish. Conserved domain, higher similarity with other Rel/NF-kappa Bs and phylogenetic analysis suggested that EsRelish was a member of the NF-kappa B family. Quantitative real-time RT-PCR was employed to detect the mRNA transcripts of EsRelish in different tissues and its temporal expression in hemocytes of E. sinensis challenged with Pichia methanolica and Listonella anguillarum. The EsRelish mRNA was found to be constitutively expressed in a wide range of tissues. It could be mainly detected in the hemocytes, gonad and hepatopancreas, and less degree in the gill, muscle and heart. The expression level of EsRelish mRNA in hemocytes was up-regulated from at 3, 6, 9 and 12 h after P. methanolica challenge. In L. anguillarum challenge, it was up-regulated at 9, 12 and 24 h. The results collectively indicated that EsRelish was potentially involved in the immune response against fungus and bacteria.
Resumo:
Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Cu, Zn superoxide dismutases (SODs) are rnetalloenzymes that represent one important line of defence against reactive oxygen species (ROS). A cytoplasmic Cu. Zn SOD cDNA sequence was cloned from scallop Chlamys farreri by the homology-based cloning technique. The full-length cDNA of scallop cytoplasmic Cu, Zn SOD (designated CfSOD) was 1022 bp with a 459 bp open reading frame encoding a polypeptide of 153 amino acids. The predicted amino acid sequence of CfSOD shared high identity with cytoplasmic Cu. Zn SOD in molluscs, insects, mammals and other animals, such as cytoplasmic Cu, Zn SOD in oyster Crassostrea sostrea gigas (CAD42722), mosquito Aedes aegypti (ABF18094), and cow Bos taurus (XP_584414). A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the mRNA expression of CfSOD in different tissues and the temporal expression of CfSOD in scallop challenged with Listonella anguillarum, Micrococcus luteus and Candida lipolytica respectively. Higher-level mRNA expression of CfSOD was detected in the tissues of haemocytes, gill filaments and kidney. The expression of CfSOD dropped in the first 8-16 h and then recovered after challenge with L. anguillarum and M. litteus, but no change was induced by the C. lipolytica challenge. The results indicated that CfSOD was a constitutive and inducible acute-phase protein, and could play an important role in the immune responses against L. anguillarum and M. luteus infection. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.