957 resultados para model-based reasoning processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrating solar power is an important way of providing renewable energy. Model simulation approaches play a fundamental role in the development of this technology and, for this, an accurately validation of the models is crucial. This work presents the validation of the heat loss model of the absorber tube of a parabolic trough plant by comparing the model heat loss estimates with real measurements in a specialized testing laboratory. The study focuses on the implementation in the model of a physical-meaningful and widely valid formulation of the absorber total emissivity depending on the surface’s temperature. For this purpose, the spectral emissivity of several absorber’s samples are measured and, with these data, the absorber total emissivity curve is obtained according to Planck function. This physical-meaningful formulation is used as input parameter in the heat loss model and a successful validation of the model is performed. Since measuring the spectral emissivity of the absorber surface may be complex and it is sample-destructive, a new methodology for the absorber’s emissivity characterization is proposed. This methodology provides an estimation of the absorber total emissivity, retaining its physical meaning and widely valid formulation according to Planck function with no need for direct spectral measurements. This proposed method is also successfully validated and the results are shown in the present paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of temperature distribution in cold rooms is an important consideration in the design of food storage solutions. Two common approaches used in both industry and academia to address this question are the deployment of wireless sensors, and modelling with Computational Fluid Dynamics (CFD). However, for a realworld evaluation of temperature distribution in a cold room, both approaches have their limitations. For wireless sensors, it is economically unfeasible to carry out large-scale deployment (to obtain a high resolution of temperature distribution); while with CFD modelling, it is usually not accurate enough to get a reliable result. In this paper, we propose a model-based framework which combines the wireless sensors technique with CFD modelling technique together to achieve a satisfactory trade-off between minimum number of wireless sensors and the accuracy of temperature profile in cold rooms. A case study is presented to demonstrate the usability of the framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest editorial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The manufacture of materials products involves the control of a range of interacting physical phenomena. The material to be used is synthesised and then manipulated into some component form. The structure and properties of the final component are influenced by both interactions of continuum-scale phenomena and those at an atomistic-scale level. Moreover, during the processing phase there are some properties that cannot be measured (typically the liquid-solid phase change). However, it seems there is a potential to derive properties and other features from atomistic-scale simulations that are of key importance at the continuum scale. Some of the issues that need to be resolved in this context focus upon computational techniques and software tools facilitating: (i) the multiphysics modeling at continuum scale; (ii) the interaction and appropriate degrees of coupling between the atomistic through microstructure to continuum scale; and (iii) the exploitation of high-performance parallel computing power delivering simulation results in a practical time period. This paper discusses some of the attempts to address each of the above issues, particularly in the context of materials processing for manufacture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the architecture of the case based reasoning (CBR) component of Smartfire, a fire field modelling tool for use by members of the Fire Safety Engineering community who are not expert in modelling techniques. The CBR system captures the qualitative reasoning of an experienced modeller in the assessment of room geometries so as to set up the important initial parameters of the problem. The system relies on two important reasoning principles obtained from the expert: 1) there is a natural hierarchical retrieval mechanism which may be employed; and 2) much of the reasoning on a qualitative level is linear in nature, although the computational solution of the problem is non-linear. The paper describes the qualitative representation of geometric room information on which the system is based, and the principles on which the CBR system operates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a framework for Historical Case-Based Reasoning (HCBR) which allows the expression of both relative and absolute temporal knowledge, representing case histories in the real world. The formalism is founded on a general temporal theory that accommodates both points and intervals as primitive time elements. A case history is formally defined as a collection of (time-independent) elemental cases, together with its corresponding temporal reference. Case history matching is two-fold, i.e., there are two similarity values need to be computed: the non-temporal similarity degree and the temporal similarity degree. On the one hand, based on elemental case matching, the non-temporal similarity degree between case histories is defined by means of computing the unions and intersections of the involved elemental cases. On the other hand, by means of the graphical presentation of temporal references, the temporal similarity degree in case history matching is transformed into conventional graph similarity measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical models are important tools used in engineering fields to predict the behaviour and the impact of physical elements. There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. This paper considers how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor problem. The paper describes example problems faced by design engineers in this context and the issues that need to be considered in this approach. Solution of these problems require methods to handle constraints in both the retrieval phase and the adaptation phase of a typical CBR cycle. We show approaches to the solution of these problesm via a CBR tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional approach of dealing with cases from Multiple Case Bases is to map these to one central case base that is used for knowledge extraction and problem solving. Accessing Multiple Case Bases should not require a change to their data structure. This paper presents an investigation into applying Case-Based Reasoning to Multiple Heterogeneous Case Bases. A case study is presented to illustrate and evaluate the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a mechanism for representing and recognizing case history patterns with rich internal temporal aspects. A case history is characterized as a collection of elemental cases as in conventional case-based reasoning systems, together with the corresponding temporal constraints that can be relative and/or with absolute values. A graphical representation for case histories is proposed as a directed, partially weighted and labeled simple graph. In terms of such a graphical representation, an eigen-decomposition graph matching algorithm is proposed for recognizing case history patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address the use of CBR in collaboration with numerical engineering models. This collaborative combination has a particular application in engineering domains where numerical models are used. We term this domain “Case Based Engineering” (CBE), and present the general architecture of a CBE system. We define and discuss the general characteristics of CBE and the special problems which arise. These are: the handling of engineering constraints of both continuous and nominal kind; interpolation over both continuous and nominal variables, and conformability for interpolation. In order to illustrate the utility of the method proposed, and to provide practical examples of the general theory, the paper describes a practical application of the CBE architecture, known as CBE-CONVEYOR, which has been implemented by the authors.Pneumatic conveying is an important transportation technology in the solid bulks conveying industry. One of the major industry concerns is the attrition of powders and granules during pneumatic conveying. To minimize the fraction of particles during pneumatic conveying, engineers want to know what design parameters they should use in building a conveyor system. To do this, engineers often run simulations in a repetitive manner to find appropriate input parameters. CBE-Conveyor is shown to speed up conventional methods for searching for solutions, and to solve problems directly that would otherwise require considerable intervention from the engineer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation into applying Case-Based Reasoning to Multiple Heterogeneous Case Bases using agents. The adaptive CBR process and the architecture of the system are presented. A case study is presented to illustrate and evaluate the approach. The process of creating and maintaining the dynamic data structures is discussed. The similarity metrics employed by the system are used to support the process of optimisation of the collaboration between the agents which is based on the use of a blackboard architecture. The blackboard architecture is shown to support the efficient collaboration between the agents to achieve an efficient overall CBR solution, while using case-based reasoning methods to allow the overall system to adapt and “learn” new collaborative strategies for achieving the aims of the overall CBR problem solving process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the optimum design of pilot-symbol-assisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in medium-rate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.