912 resultados para model selection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los métodos de máxima verosimilitud (MMV) ofrecen un marco alternativo a la estadística frecuentista convencional, alejándose del uso del p-valor para el rechazo de una única hipótesis nula y optando por el uso de las verosimilitudes para evaluar el grado de apoyo en los datos a un conjunto de hipótesis alternativas (o modelos) de interés para el investigador. Estos métodos han sido ampliamente aplicados en ecología en el marco de los modelos de vecindad. Dichos modelos usan una aproximación espacialmente explícita para describir procesos demográficos de plantas o procesos ecosistémicos en función de los atributos de los individuos vecinos. Se trata por tanto de modelos fenomenológicos cuya principal utilidad radica en funcionar como herramientas de síntesis de los múltiples mecanismos por los que las especies pueden interactuar e influenciar su entorno, proporcionando una medida del efecto per cápita de individuos de distintas características (ej. tamaño, especie, rasgos fisiológicos) sobre los procesos de interés. La gran ventaja de aplicar los MMV en el marco de los modelos de vecindad es que permite ajustar y comparar múltiples modelos que usen distintos atributos de los vecinos y/o formas funcionales para seleccionar aquel con mayor soporte empírico. De esta manera, cada modelo funcionará como un “experimento virtual” para responder preguntas relacionadas con la magnitud y extensión espacial de los efectos de distintas especies coexistentes, y extraer conclusiones sobre posibles implicaciones para el funcionamiento de comunidades y ecosistemas. Este trabajo sintetiza las técnicas de implementación de los MMV y los modelos de vecindad en ecología terrestre, resumiendo su uso hasta la fecha y destacando nuevas líneas de aplicación.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE To identify the prevalence and progression of macular atrophy (MA) in neovascular age-related macular degeneration (AMD) patients under long-term anti-vascular endothelial growth factor (VEGF) therapy and to determine risk factors. METHOD This retrospective study included patients with neovascular AMD and ≥30 anti-VEGF injections. Macular atrophy (MA) was measured using near infrared and spectral-domain optical coherence tomography (SD-OCT). Yearly growth rate was estimated using square-root transformation to adjust for baseline area and allow for linearization of growth rate. Multiple regression with Akaike information criterion (AIC) as model selection criterion was used to estimate the influence of various parameters on MA area. RESULTS Forty-nine eyes (47 patients, mean age 77 ± 14) were included with a mean of 48 ± 13 intravitreal anti-VEGF injections (ranibizumab:37 ± 11, aflibercept:11 ± 6, mean number of injections/year 8 ± 2.1) over a mean treatment period of 6.2 ± 1.3 years (range 4-8.5). Mean best-corrected visual acuity improved from 57 ± 17 letters at baseline (= treatment start) to 60 ± 16 letters at last follow-up. The MA prevalence within and outside the choroidal neovascularization (CNV) border at initial measurement was 45% and increased to 74%. Mean MA area increased from 1.8 ± 2.7 mm(2) within and 0.5 ± 0.98 mm(2) outside the CNV boundary to 2.7 ± 3.4 mm(2) and 1.7 ± 1.8 mm(2) , respectively. Multivariate regression determined posterior vitreous detachment (PVD) and presence/development of intraretinal cysts (IRCs) as significant factors for total MA size (R(2) = 0.16, p = 0.02). Macular atrophy (MA) area outside the CNV border was best explained by the presence of reticular pseudodrusen (RPD) and IRC (R(2) = 0.24, p = 0.02). CONCLUSION A majority of patients show MA after long-term anti-VEGF treatment. Reticular pseudodrusen (RPD), IRC and PVD but not number of injections or treatment duration seem to be associated with the MA size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We conducted a demographic and genetic study to investigate the effects of fragmentation due to the establishment of an exotic softwood plantation on populations of a small marsupial carnivore, the agile antechinus (Antechinus agilis), and the factors influencing the persistence of those populations in the fragmented habitat. The first aspect of the study was a descriptive analysis of patch occupancy and population size, in which we found a patch occupancy rate of 70% among 23 sites in the fragmented habitat compared to 100% among 48 sites with the same habitat characteristics in unfragmented habitat. Mark-recapture analyses yielded most-likely population size estimates of between 3 and 85 among the 16 occupied patches in the fragmented habitat. Hierarchical partitioning and model selection were used to identify geographic and habitat-related characteristics that influence patch occupancy and population size. Patch occupancy was primarily influenced by geographic isolation and habitat quality (vegetation basal area). The variance in population size among occupied sites was influenced primarily by forest type (dominant Eucalyptus species) and, to a lesser extent, by patch area and topographic context (gully sites had larger populations). A comparison of the sex ratios between the samples from the two habitat contexts revealed a significant deficiency of males in the fragmented habitat. We hypothesise that this is due to male-biased dispersal in an environment with increased dispersal-associated mortality. The population size and sex ratio data were incorporated into a simulation study to estimate the proportion of genetic diversity that would have been lost over the known timescale since fragmentation if the patch populations had been totally isolated. The observed difference in genetic diversity (gene diversity and allelic richness at microsatellite and mitochondrial markers) between 16 fragmented and 12 unfragmented sites was extremely low and inconsistent with the isolation of the patch populations. Our results show that although the remnant habitat patches comprise approximately 2% of the study area, they can support non-isolated populations. However, the distribution of agile antechinus populations in the fragmented system is dependent on habitat quality and patch connectivity. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many long-lived marine species exhibit life history traits. that make them more vulnerable to overexploitation. Accurate population trend analysis is essential for development and assessment of management plans for these species. However, because many of these species disperse over large geographic areas, have life stages inaccessible to human surveyors, and/or undergo complex developmental migrations, data on trends in abundance are often available for only one stage of the population, usually breeding adults. The green turtle (Chelonia mydas) is one of these long-lived species for which population trends are based almost exclusively on either numbers of females that emerge to nest or numbers of nests deposited each year on geographically restricted beaches. In this study, we generated estimates of annual abundance for juvenile green turtles at two foraging grounds in the Bahamas based on long-term capture-mark-recapture (CMR) studies at Union Creek (24 years) and Conception Creek (13 years), using a two-stage approach. First, we estimated recapture probabilities from CMR data using the Cormack-Jolly-Seber models in the software program MARK; second, we estimated annual abundance of green turtles. at both study sites using the recapture probabilities in a Horvitz-Thompson type estimation procedure. Green turtle abundance did not change significantly in Conception Creek, but, in Union Creek, green turtle abundance had successive phases of significant increase, significant decrease, and stability. These changes in abundance resulted from changes in immigration, not survival or emigration. The trends in abundance on the foraging grounds did not conform to the significantly increasing trend for the major nesting population at Tortuguero, Costa Rica. This disparity highlights the challenges of assessing population-wide trends of green turtles and other long-lived species. The best approach for monitoring population trends may be a combination of (1) extensive surveys to provide data for large-scale trends in relative population abundance, and (2) intensive surveys, using CMR techniques, to estimate absolute abundance and evaluate the demographic processes' driving the trends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the case of a neologistic jargonaphasic and ask whether her target-related and abstruse neologisms are the result of a single deficit, which affects some items more severely than others, or two deficits: one to lexical access and the other to phonological encoding. We analyse both correct/incorrect performance and errors and apply both traditional and formal methods (maximum-likelihood estimation and model selection). All evidence points to a single deficit at the level of phonological encoding. Further characteristics are used to constrain the locus still further. V.S. does not show the type of length effect expected of a memory component, nor the pattern of errors associated with an articulatory deficit. We conclude that her neologistic errors can result from a single deficit at a level of phonological encoding that immediately follows lexical access where segments are represented in terms of their features. We do not conclude, however, that this is the only possible locus that will produce phonological errors in aphasia, or, indeed, jargonaphasia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG  k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is a study of low-dimensional visualisation methods for data visualisation under certainty of the input data. It focuses on the two main feed-forward neural network algorithms which are NeuroScale and Generative Topographic Mapping (GTM) by trying to make both algorithms able to accommodate the uncertainty. The two models are shown not to work well under high levels of noise within the data and need to be modified. The modification of both models, NeuroScale and GTM, are verified by using synthetic data to show their ability to accommodate the noise. The thesis is interested in the controversy surrounding the non-uniqueness of predictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as available in DNA microarray experiments. Many of these studies have ignored the uncertainty issue resulting in random correlations of sparse model selection in high dimensional spaces. The visualisation techniques are used to confirm that the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of ‘unclassifiable’ should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small selected subsets of genes from very large potential candidates as available in DNA microarray experiments is now widely acknowledged 1. Many of these studies have focused on constructing discriminative semi-parametric models and as such are also subject to the issue of random correlations of sparse model selection in high dimensional spaces. In this work we outline a different approach based around an unsupervised patient-specific nonlinear topographic projection in predictive gene lists. Methods: We construct nonlinear topographic projection maps based on inter-patient gene-list relative dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of 70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each patient using the resulting projections from those visualisation techniques and investigate whether a-posteriori two prognosis groups are separable on the evidence of the gene lists. A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list using the above methods. Generalisation ability is investigated by using the mapping capability of Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset. Results: The results indicate that small subsets of patient-specific PGLs have insufficient prognostic dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative projections across different PGLs provide similar results. Conclusion: The random correlation effect to an arbitrary outcome induced by small subset selection from very high dimensional interrelated gene expression profiles leads to an outcome with associated uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative classifiers. However a patient's gene expression profile could possibly be used in treatment planning, based on knowledge of other patients' responses. We conclude that many of the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 94A17, 62B10, 62F03.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successful conservation of migratory birds demands we understand how habitat factors on the breeding grounds influences breeding success. Multiple factors are known to directly influence breeding success in territorial songbirds. For example, greater food availability and fewer predators can have direct effects on breeding success. However, many of these same habitat factors can also result in higher conspecific density that may ultimately reduce breeding success through density dependence. In this case, there is a negative indirect effect of habitat on breeding success through its effects on conspecific density and territory size. Therefore, a key uncertainty facing land managers is whether important habitat attributes directly influence breeding success or indirectly influence breeding success through territory size. We used radio-telemetry, point-counts, vegetation sampling, predator observations, and insect sampling over two years to provide data on habitat selection of a steeply declining songbird species, the Canada Warbler (Cardellina canadensis). These data were then applied in a hierarchical path modeling framework and an AIC model selection approach to determine the habitat attributes that best predict breeding success. Canada Warblers had smaller territories in areas with high shrub cover, in the presence of red squirrels (Tamiasciurus hudsonicus), at shoreline sites relative to forest-interior sites and as conspecific density increased. Breeding success was lower for birds with smaller territories, which suggests competition for limited food resources, but there was no direct evidence that food availability influenced territory size or breeding success. The negative relationship between shrub cover and territory size in our study may arise because these specific habitat conditions are spatially heterogeneous, whereby individuals pack into patches of preferred breeding habitat scattered throughout the landscape, resulting in reduced territory size and an associated reduction in resource availability per territory. Our results therefore highlight the importance of considering direct and indirect effects for Canada warblers; efforts to increase the amount of breeding habitat may ultimately result in lower breeding success if habitat availability is limited and negative density dependent effects occur.