879 resultados para model predictive control approach


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To cope with modernity, the interesting of having a fully automated house has been increasing over the years, as technology evolves and as our lives become more stressful and overloaded. An automation system provides a way to simplify some daily tasks, allowing us to have more spare time to perform activities where we are really needed. There are some systems in this domain that try to implement these characteristics, but this kind of technology is at its early stages of evolution being that it is still far away of empowering the user with the desired control over a habitation. The reason is that the mentioned systems miss some important features such as adaptability, extension and evolution. These systems, developed from a bottom-up approach, are often tailored for programmers and domain experts, discarding most of the times the end users that remain with unfinished interfaces or products that they have difficulty to control. Moreover, complex behaviors are avoided, since they are extremely difficult to implement mostly due to the necessity of handling priorities, conflicts and device calibration. Besides, these solutions are only reachable at very high costs, yet they still have the limitation of being difficult to configure by non-technical people once in runtime operation. As a result, it is necessary to create a tool that allows the execution of several automated actions, with an interface that is easy to use but at the same time supports all the main features of this domain. It is also desirable that this tool is independent of the hardware so it can be reused, thus a Model Driven Development approach (MDD) is the ideal option, as it is a method that follows those principles. Since the automation domain has some very specific concepts, the use of models should be combined with a Domain Specific Language (DSL). With these two methods, it is possible to create a solution that is adapted to the end users, but also to domain experts and programmers due to the several levels of abstraction that can be added to diminish the complexity of use. The aim of this thesis is to design a Domain Specific Language (DSL) that uses the Model Driven Development approach (MDD), with the purpose of supporting Home Automation (HA) concepts. In this implementation, the development of simple and complex scenarios should be supported and will be one of the most important concerns. This DSL should also support other significant features in this domain, such as the ability to schedule tasks, which is something that is limited in the current existing solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral), methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosoma mansoni infection induces in their hosts a marked and sustained eosinophilia, which is influenced or modulated by complex mechanisms, that vary according to the phase of infection. To address this phenomenon, we used the air pouch (AP) model in control and infected Swiss webster mice, analyzing the cellular, tissue response and local expression of adhesion molecules [CD18 (beta 2-chain), CD44, ICAM-1 (CD54), L-selectin (CD62L), CD49d (alpha 4-chain), LFA1 (CD11a)]. Infected animals were studied at 3 (pre-oviposition phase), 7 (acute phase), and 14 (chronic phase) weeks after infection (5-6 mice/period of infection). Normal mice were age-matched. Results showed that after egg stimulation, compared with matched controls, the infected mice, at each point of infection, showed a lower eosinophil response in the acute (7 weeks) and chronic phase (14 weeks) of infection. However, when the infected mice were in pre-oviposition phase (3 weeks) their eosinophil response surpassed the control ones. In the AP wall of infected mice, a significant decrease in the expression of ICAM-1 and CD44 in fibroblastic-like cells and a reduction in the number of CD18 and CD11a in migratory cells were observed. The other adhesion molecules were negative or weakly expressed. The results indicated that in the air pouch model, in S. mansoni-infected mice: (1) eosinophil response is strikingly down-regulated, during the acute ovular phase; (2) in the pre-oviposition phase, in contrast, it occurs an up-regulatory modulation of eosinophil response, in which the mechanisms are completely unknown; (3) in the chronic phase of the infection, the down modulation of eosinophil response is less pronounced; 4) Down-regulation of adhesion molecules, specially of ICAM-1 appear to be associated with the lower eosinophil response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium signalling is fundamental for muscular contractility of Schistosoma mansoni. We have previously described the presence of transport ATPases (Na+,K+-ATPase and (Ca2+-Mg2+)-ATPase) and calcium channels (ryanodine receptors - RyR) involved in control of calcium homeostasis in this worm. Here we briefly review the main technics (ATPase activity, binding with specific radioligands, fluxes of 45Ca2+ and whole worm contractions) and results obtained in order to compare the distribution patterns of these proteins: thapsigargin-sensitive (Ca2+-Mg2+)-ATPase activity and RyR co-purified in P1 and P4 fractions mainly, which is compatible with a sarcoplasmic reticulum localization, while basal ATPase (along with Na+,K+-ATPase) and thapsigargin-resistant (Ca2+-Mg2+)-ATPase have a distinct distribution, indicative of their plasma membrane localization. Finally we attempt to integrate these contributions with data from other groups in order to propose the first synoptic model for control of calcium homeostasis in S. mansoni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a test of the predictive validity of various classes ofQALY models (i.e., linear, power and exponential models). We first estimatedTTO utilities for 43 EQ-5D chronic health states and next these states wereembedded in health profiles. The chronic TTO utilities were then used topredict the responses to TTO questions with health profiles. We find that thepower QALY model clearly outperforms linear and exponential QALY models.Optimal power coefficient is 0.65. Our results suggest that TTO-based QALYcalculations may be biased. This bias can be avoided using a power QALY model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The state-space approach is used to evaluate the relation between soil physical and chemical properties in an area cultivated with sugarcane. The experiment was carried out on a Rhodic Kandiudalf in Piracicaba, State of São Paulo, Brazil. Sugarcane was planted on an area of 0.21 ha i.e., in 15 rows 100 m long, spaced 1.4 m. Soil water content, soil organic matter, clay content and aggregate stability were sampled along a transect of 84 points, meter by meter. The state-space approach is used to evaluate how the soil water content is affected by itself and by soil organic matter, clay content, and aggregate stability of neighboring locations, in different combinations, aiming to contribute to a better understanding of the relation among these variables in the soil. Results show that soil water contents were successfully estimated by this approach. Best performances were found when the estimate of soil water content at locations i was related to soil water content, clay content and aggregate stability at locations i-1. Results also indicate that this state-space model using all series describes the soil water content better than any equivalent multiple regression equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the detectability of tumors by light-induced fluorescence, the use of monoclonal antibodies (MoAb) as carriers of fluorescent molecules was studied. As a model for this approach, the biodistribution of an anticarcinoembryonic antigen (CEA) MoAb coupled to fluorescein was studied in mice bearing a human colon carcinoma xenograft. In vitro, such conjugates with fluorescein-MoAb molar ratios ranging from four to 19, doubly labeled with 125I, showed more than 82% binding to immobilized CEA. In vivo, conjugates with a fluorescein-MoAb molar ratio of ten or less resulted in a tumor uptake of more than 30% of the injected dose of radioactivity per gram tumor at 24 hours. Tumor to liver, kidney, and muscle ratios of 20, 30 and 72, respectively, were obtained 48 hours after injection of the 125I-MoAb-(fluorescein)10 conjugate. The highest fluorescence intensity was always obtained for the tumor with the anti-CEA MoAb conjugate; whereas in control mice injected with fluoresceinated control immunoglobulin G1, no detectable increase in tumor fluorescence was observed. To compare these results with a classically used dye, mice bearing the same xenografts received 60 micrograms of Photofrin II. The intensity of the fluorescence signal of the tumor with this amount of Photofrin II was eight times lower than that obtained after an injection of 442 ng of fluorescein coupled with 20 micrograms of MoAb, which gave an absolute amount of fluorescein localized in the tumor of up to 125 ng/g of tumor. These results illustrate the possibility of improving the specificity of in vivo tumor localization of dyes for laser-induced fluorescence photodetection and phototherapy by coupling them to MoAb directed against tumor markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization is a purification method used to obtain crystalline product of a certain crystal size. It is one of the oldest industrial unit processes and commonly used in modern industry due to its good purification capability from rather impure solutions with reasonably low energy consumption. However, the process is extremely challenging to model and control because it involves inhomogeneous mixing and many simultaneous phenomena such as nucleation, crystal growth and agglomeration. All these phenomena are dependent on supersaturation, i.e. the difference between actual liquid phase concentration and solubility. Homogeneous mass and heat transfer in the crystallizer would greatly simplify modelling and control of crystallization processes, such conditions are, however, not the reality, especially in industrial scale processes. Consequently, the hydrodynamics of crystallizers, i.e. the combination of mixing, feed and product removal flows, and recycling of the suspension, needs to be thoroughly investigated. Understanding of hydrodynamics is important in crystallization, especially inlargerscale equipment where uniform flow conditions are difficult to attain. It is also important to understand different size scales of mixing; micro-, meso- and macromixing. Fast processes, like nucleation and chemical reactions, are typically highly dependent on micro- and mesomixing but macromixing, which equalizes the concentrations of all the species within the entire crystallizer, cannot be disregarded. This study investigates the influence of hydrodynamics on crystallization processes. Modelling of crystallizers with the mixed suspension mixed product removal (MSMPR) theory (ideal mixing), computational fluid dynamics (CFD), and a compartmental multiblock model is compared. The importance of proper verification of CFD and multiblock models is demonstrated. In addition, the influence of different hydrodynamic conditions on reactive crystallization process control is studied. Finally, the effect of extreme local supersaturation is studied using power ultrasound to initiate nucleation. The present work shows that mixing and chemical feeding conditions clearly affect induction time and cluster formation, nucleation, growth kinetics, and agglomeration. Consequently, the properties of crystalline end products, e.g. crystal size and crystal habit, can be influenced by management of mixing and feeding conditions. Impurities may have varying impacts on crystallization processes. As an example, manganese ions were shown to replace magnesium ions in the crystal lattice of magnesium sulphate heptahydrate, increasing the crystal growth rate significantly, whereas sodium ions showed no interaction at all. Modelling of continuous crystallization based on MSMPR theory showed that the model is feasible in a small laboratoryscale crystallizer, whereas in larger pilot- and industrial-scale crystallizers hydrodynamic effects should be taken into account. For that reason, CFD and multiblock modelling are shown to be effective tools for modelling crystallization with inhomogeneous mixing. The present work shows also that selection of the measurement point, or points in the case of multiprobe systems, is crucial when process analytical technology (PAT) is used to control larger scale crystallization. The thesis concludes by describing how control of local supersaturation by highly localized ultrasound was successfully applied to induce nucleation and to control polymorphism in reactive crystallization of L-glutamic acid.