936 resultados para mobile robots


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design and development of the swordfish autonomous surface vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5 m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Underwater acoustic networks can be quite effective to establish communication links between autonomous underwater vehicles (AUVs) and other vehicles or control units, enabling complex vehicle applications and control scenarios. A communications and control framework to support the use of underwater acoustic networks and sample application scenarios are described for single and multi-AUV operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a hybrid coordinated manoeuvre for docking an autonomous surface vehicle with an autonomous underwater vehicle. The control manoeuvre uses visual information to estimate the AUV relative position and attitude in relation to the ASV and steers the ASV in order to dock with the AUV. The AUV is assumed to be at surface with only a small fraction of its volume visible. The system implemented in the autonomous surface vehicle ROAZ, developed by LSA-ISEP to perform missions in river environment, test autonomous AUV docking capabilities and multiple AUV/ASV coordinated missions is presented. Information from a low cost embedded robotics vision system (LSAVision), along with inertial navigation sensors is fused in an extended Kalman filter and used to determine AUV relative position and orientation to the surface vehicle The real time vision processing system is described and results are presented in operational scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report addresses the problem of achieving cooperation within small- to medium- sized teams of heterogeneous mobile robots. I describe a software architecture I have developed, called ALLIANCE, that facilitates robust, fault tolerant, reliable, and adaptive cooperative control. In addition, an extended version of ALLIANCE, called L-ALLIANCE, is described, which incorporates a dynamic parameter update mechanism that allows teams of mobile robots to improve the efficiency of their mission performance through learning. A number of experimental results of implementing these architectures on both physical and simulated mobile robot teams are described. In addition, this report presents the results of studies of a number of issues in mobile robot cooperation, including fault tolerant cooperative control, adaptive action selection, distributed control, robot awareness of team member actions, improving efficiency through learning, inter-robot communication, action recognition, and local versus global control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El Grup de Visió per Computador i Robòtica (VICOROB) del departament d'Electrònica, Informàtica i Automàtica de la Universitat de Girona investiga en el camp de la robòtica submarina. Al CIRS (Centre d’Investigació en Robòtica Submarina), laboratori que forma part del grup VICOROB, el robot submarí Ictineu és la principal eina utilitzada per a desenvolupar els projectes de recerca. Recentment, el CIRS ha adquirit un nou sistema de sensors d' orientació basat en una unitat inercial i un giroscopi de fibra òptica. Aquest projecte pretén realitzar un estudi d' aquests dispositius i integrar-los al robot Ictineu. D' altra banda, aprofitant les característiques d’aquests sensors giroscopics i les mesures d' un sonar ja integrat al robot, es vol desenvolupar un sistema de localització capaç de determinar la posició del robot en el pla horitzontal de la piscina en temps real