999 resultados para meccanica quantistica oscillatore armonico propagatore funzioni speciali


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All'interno della mia tesi verrà introdotta la teoria delle funzioni in R^{n} a variazione limitata (BV), seguendo le presentazioni di Lawrence C.Evans e Ronald F.Gariepy nel libro Measure Theory and Fine Properties of Functions e di Enrico Giusti nell'opera Minimal Surfaces and Functions of Bounded Variation. Le funzioni BV sono funzioni le cui derivate prime deboli sono misure di Radon, ossia misure di Borel regolari finite sui compatti. In particolare verranno anche analizzati gli insiemi E che hanno perimetro finito, ossia tali che la funzione indicatrice dell’insieme E sia una funzione BV. Nello specifico, nel primo capitolo verranno date le definizioni di funzioni BV e insiemi di perimetro finito, sia in una versione globale che in una locale, verrà enunciato un primo importante teorema per le funzioni BV e verrà analizzata la relazione tra funzioni di Sobolev e funzioni BV. Nel secondo capitolo, invece, verranno analizzate la semicontinuità inferiore, l'approssimazione con funzioni lisce e la compattezza di funzioni BV, mentre nel terzo capitolo verranno elencati alcuni risultati sulle funzioni BV riguardanti la Traccia, l'Estensione e la formula di Coarea. Infine, nel quarto ed ultimo capitolo, verranno studiate le disuguaglianze di Sobolev e Poincaré e le disuguaglianze isoperimetriche per funzioni BV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi cercherò di analizzare le funzioni di Sobolev su R}^{n}, seguendo le trattazioni Measure Theory and Fine Properties of Functions di L.C. Evans e R.F.Gariepy e l'elaborato Functional Analysis, Sobolev Spaces and Partial Differential Equations di H. Brezis. Le funzioni di Sobolev si caratterizzano per essere funzioni con le derivate prime deboli appartenenti a qualche spazio L^{p}. I vari spazi di Sobolev hanno buone proprietà di completezza e compattezza e conseguentemente sono spesso i giusti spazi per le applicazioni di analisi funzionale. Ora, come vedremo, per definizione, l'integrazione per parti è valida per le funzioni di Sobolev. È, invece, meno ovvio che altre regole di calcolo siano allo stesso modo valide. Così, ho inteso chiarire questa questione di carattere generale, con particolare attenzione alle proprietà puntuali delle funzioni di Sobolev. Abbiamo suddiviso il lavoro svolto in cinque capitoli. Il capitolo 1 contiene le definizioni di base necessarie per la trattazione svolta; nel secondo capitolo sono stati derivati vari modi di approssimazione delle funzioni di Sobolev con funzioni lisce e sono state fornite alcune regole di calcolo per tali funzioni. Il capitolo 3 darà un' interpretazione dei valori al bordo delle funzioni di Sobolev utilizzando l'operatore Traccia, mentre il capitolo 4 discute l' estensione su tutto R^{n} di tali funzioni. Proveremo infine le principali disuguaglianze di Sobolev nel Capitolo 5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obiettivo della tesi è la realizzazione di un dispositivo in grado di riprodurre il sistema del pendolo inverso e di trovare soluzioni vicine alla posizione di equilibrio stabile. Verranno ricavate le equazioni del moto che descrivono il sistema attraverso la meccanica Lagrangiana. Una volta integrate numericamente le equazioni, si procederà con la ricerca di una funzione di controllo per mantenere in equilibrio il sistema: l'efficacia della soluzione verrà valutata graficamente, senza approfondire l'approccio proveniente dalla teoria del controllo che ne è alla base. Infine il sistema verrà realizzato praticamente ed utilizzeremo le stesse funzioni studiate in precedenza.