825 resultados para means clustering
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
The conventional approach in the discipline of International Relations is to treat terrorist organizations as "non-state" actors of international relations. However, this approach is problematic due to the fact that most terrorist organizations are backed or exploited by some states. In this article, I take issue with the non-stateness of terrorist organizations and seek to answer the question of why so many states, at times, support terrorist organizations. I argue that in the face of rising threats to national security in an age of devastating wars, modern nation states tend to provide support to foreign terrorist organizations that work against their present and imminent enemies. I elaborate on my argument studying three cases of state support for terrorism: Iranian support for Hamas, Syrian support for the PKK, and American support for the MEK. The analyses suggest that, for many states, terror is nothing but war by other means.
Resumo:
In order to obtain evidence on the size of the impact of the Hong Kong/68 variant of influenza A2 virus on the population of São Paulo, Brazil, serum samples taken in 1967 before this variant appeared and during successive years after it appeared were examined for their antibody content. Haemagglutination-inhibition tests performed on a total of 2726 serum samples from adults showed a sharp decrease in 1969 of the proportion of sera without antibody to the Hong Kong/68 variant and a corresponding mercase in the proportion with high titres. It was concluded that about three-quarters of the adult population became infected at some time after the variant appeared, the majority in the first year of prevalence.
Resumo:
OBJECTIVE: To estimate the incidence rate of type 1 diabetes in the urban area of Santiago, Chile, from March 21, 1997 to March 20, 1998, and to assess the spatio-temporal clustering of cases during that period. METHODS: All sixty-one incident cases were located temporally (day of diagnosis) and spatially (place of residence) in the area of study. Knox's method was used to assess spatio-temporal clustering of incident cases. RESULTS: The overall incidence rate of type 1 diabetes was 4.11 cases per 100,000 children aged less than 15 years per year (95% confidence interval: 3.06--5.14). The incidence rate seems to have increased since the last estimate of the incidence calculated for the years 1986--1992 in the metropolitan region of Santiago. Different combinations of space-time intervals have been evaluated to assess spatio-temporal clustering. The smallest p-value was found for the combination of critical distances of 750 meters and 60 days (uncorrected p-value = 0.048). CONCLUSIONS: Although these are preliminary results regarding space-time clustering in Santiago, exploratory analysis of the data method would suggest a possible aggregation of incident cases in space-time coordinates.
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.
Resumo:
Audiometer systems provide enormous amounts of detailed TV watching data. Several relevant and interdependent factors may influence TV viewers' behavior. In this work we focus on the time factor and derive Temporal Patterns of TV watching, based on panel data. Clustering base attributes are originated from 1440 binary minute-related attributes, capturing the TV watching status (watch/not watch). Since there are around 2500 panel viewers a data reduction procedure is first performed. K-Means algorithm is used to obtain daily clusters of viewers. Weekly patterns are then derived which rely on daily patterns. The obtained solutions are tested for consistency and stability. Temporal TV watching patterns provide new insights concerning Portuguese TV viewers' behavior.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)