917 resultados para maternal-effect gene


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wood formation is an economically and environmentally important process and has played a significant role in the evolution of terrestrial plants. Despite its significance, the molecular underpinnings of the process are still poorly understood. We have previously shown that four Lateral Boundary Domain (LBD) transcription factors have important roles in the regulation of wood formation with two (LBD1 and LBD4) involved in secondary phloem and ray cell development and two (LBD15 and LBD18) in secondary xylem formation. Here, we used comparative phylogenetic analyses to test potential roles of the four LBD genes in the evolution of woodiness. We studied the copy number and variation in DNA and amino acid sequences of the four LBDs in a wide range of woody and herbaceous plant taxa with fully sequenced and annotated genomes. LBD1 showed the highest gene copy number across the studied species, and LBD1 gene copy number was strongly and significantly correlated with the level of ray seriation. The lianas, cucumber and grape, with multiseriate ray cells showed the highest gene copy number (12 and 11, respectively). Because lianas’ growth habit requires significant twisting and bending, the less lignified ray parenchyma cells likely facilitate stem flexibility and maintenance of xylem conductivity. We further demonstrate conservation of amino acids in the LBD18 protein sequences that are specific to woody taxa. Neutrality tests showed evidence for strong purifying selection on these gene regions across various orders, indicating adaptive convergent evolution of LBD18. Structural modeling demonstrates that the conserved amino acids have a significant impact on the tertiary protein structure and thus are likely of significant functional importance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maternal antibodies protect newborns whilst they are immunologically immature. This study shows that maternal antibodies can also shape the B cell repertoire of the offspring long after the maternal antibodies themselves become undetectable. V(H)DJ(H) gene-targeted (VI10) mice expressing a heavy chain specific for vesicular stomatitis virus (VSV) produce a 20-fold increased spontaneous titer of VSV-neutralizing antibodies. When transferred from mother to offspring, these antibodies prevented accumulation of Ag-specific transitional type 2 and marginal zone B cells with an activated phenotype and favored selection to the B cell follicles. This effect was B cell-intrinsic and lasted up to adulthood. The pups nursed by mothers producing specific antibodies developed higher endogenous antibody titers of this specificity which perpetuated the effects of specific B cell selection into the mature follicular compartment, presumably by blocking auto-Ag-dependent development of transitional type 2 B cells in the spleen. This repertoire change was functional, as following infection of adult mice with VSV, those pups that had received specific maternal antibodies as neonates had increased pre-immune titers and mounted strong early IgG neutralizing antibodies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At the fore-front of cancer research, gene therapy offers the potential to either promote cell death or alter the behavior of tumor-cells. One example makes use of a toxic phenotype generated by the prodrug metabolizing gene, thymidine kinase (HSVtk) from the Herpes Simplex Virus. This gene confers selective toxicity to a relatively nontoxic prodrug, ganciclovir (GCV). Tumor cells transduced with the HSVtk gene are sensitive to 1-50 $\mu$M GCV; normal tissue is insensitive up to 150-250 $\mu$M GCV. Utilizing these different sensitivities, it is possible to selectively ablate tumor cells expressing this gene. Interestingly, if a HSVtk$\sp+$ expressing population is mixed with a HSVtk$\sp-$ population at high density, all the cells are killed after GCV administration. This phenomenon for killing all neighboring cells is termed the "bystander effect", which is well documented in HSVtk$\sp-$ GCV systems, though its exact mechanism of action is unclear.^ Using the mouse colon carcinoma cell line CT26, data are presented supporting possible mechanisms of "bystander effect" killing of neighboring CT26-tk$\sp-$cells. A major requirement for bystander killing is the prodrug GCV: as dead or dying CT26tk$\sp+$ cells have no toxic effect on neighboring cells in its absence. In vitro, it appears the bystander effect is due to transfer of toxic GCV-metabolites, through verapamil sensitive intracellular-junctions. Additionally, possible transfer of the HSVtk enzyme to bystander cells after GCV addition, may play a role in bystander killing. A nude mouse model suggests that in a 50/50 (tk$\sp+$/tk$\sp-$) mixture of CT26 cells the bystander eradication of tumors does not involve an immune component. Additionally in a possible clinical application, the "bystander effect" can be directly exploited to eradicate preexisting CT26 colon carcinomas in mice by intratumoral implantation of viable or lethally irradiated CT26tk$\sp+$ cells and subsequent GCV administration. Lastly, an application of this toxic phenotype gene to a clinical marking protocol utilizing a recombinant adenoviral vector carrying the bifunctional protein GAL-TEK to eradicate spontaneously-arisen or vaccine-induced fibrosarcomas in cats is demonstrated. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The myogenin gene encodes an evolutionarily conserved basic helix-loop-helix transcription factor that regulates the expression of skeletal muscle-specific genes and its homozygous deletion results in mice who die of respiratory failure at birth. The histology of skeletal muscle in the myogenin null mice is reminiscent of that found in some severe congenital myopathy patients, many of whom also die of respiratory complications and provides the rationale that an aberrant human myogenin (myf4) coding region could be associated with some congenital myopathy conditions.^ With PCR, we found similarly sized amplimers for the three exons of the myogenin gene in 37 patient and 40 control samples. In contrast to the GeneBank sequence for human myogenin, we report several differences in flanking and coding regions plus an additional 659 and 498 bps in the first and second introns, respectively, in all patients and controls. We also find a novel (CA)-dinucleotide repeat in the second intron. No causative mutations were detected in the myogenin coding regions of genomic DNA from patients with severe congenital myopathy.^ Severe congenital myopathies in humans are often associated with respiratory complications and pulmonary hypoplasia. We have employed the myogenin null mouse, which lacks normal development of skeletal muscle fibers as a genetically defined severe congenital myopathy mouse model to evaluate the effect of absent fetal breathing movement on pulmonary development.^ Significant differences are observed at embryonic days E14, E17 and E20 of lung:body weight, total DNA and histologically, suggesting that the myogenin null lungs are hypoplastic. RT-PCR, in-situ immunofluorescence and EM reveal pneumocyte type II differentiation in both null and wild lungs as early as E14. However, at E14, myogenin null lungs have decreased BrdU incorporation while E17 through term, augmented cell death is detected in the myogenin null lungs, not seen in wild littermates. Absent mechanical forces appear to impair normal growth, but not maturation, of the developing lungs in myogenin null mouse.^ These investigations provide the basis for delineating the DNA sequence of the myogenin gene and and highlight the importance of skeletal muscle development in utero for normal lung organogenesis. My observation of no mutations within the coding regions of the human myogenin gene in DNA from patients with severe congenital myopathy do not support any association with this condition. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to assess the effect of maternal pre-pregnancy weight status on the relationship between prenatal smoking and infant birth weight (IBW). Prenatal cigarette smoking and maternal weight exert opposing effects on IBW; smoking decreases birth weight while maternal pre-pregnancy weight is positively correlated with birth weight. As such, mutual effect modification may be sufficiently significant to alter the independent effects of these two birth weight correlates. Finding of such an effect has implications of prenatal smoking cessation education. Perception of risk is an important determinant of smoking cessation, and reduced or low birth weight (LBW) as a smoking-associated risk predominates prenatal smoking counseling and education. In a population such as the US, where obesity is becoming epidemic, particularly among minority and low-income groups, perception of risk may be lowered should increased maternal size attenuate the effect of smoking. Previous studies have not found a significant interaction effect of prenatal smoking and maternal pre-pregnancy weight on IBW; however, use of self-reported smoking status may have biased findings. Reliability of self-reported smoking status reported in the literature is variable, with deception rates ranging from a low of 5% to as high as 16%. This study, using data from a prenatal smoking cessation project, in which smoking status was validated by saliva cotinine, was an opportunity to assess effect modification of smoking and maternal weight using biochemically determined smoking status in lieu of self report. Stratified by saliva cotinine, 151 women from a prenatal smoking cessation cohort, who were 18 years and older and had full-term, singleton births, were included in this study. The effect of smoking in terms of mean birth weight across three levels of maternal pre-pregnancy weight was assessed by general linear modeling procedures, adjusting for other known correlates of IBW. Effect modification was marginally significant, p = .104, but only with control for differential effects among racial/ethnic groups. A smaller than planned sample of nonsmokers, or women who quit smoking during the pregnancy, prohibited rejection of the null hypothesis of no difference in the effect of smoking across levels of pre-pregnancy weight. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in the United States and is a leading cause of cancer-related deaths (1). Recently, dietary heterocyclic amines (HCAs) have been proposed to be a risk factor for breast cancer (2). This study uses the data collected for a case-control study conducted at the M.D. Anderson Cancer Center to assess the association between breast cancer risk and HCAs {2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo [4,5-f] quinoxaline (DiMeIQx) and mutagenicity of HCAs} and to examine if this association is modified by genetic polymorphisms of N-acetyl transferases (NAT1/NAT2). The NAT1/2 genotype was determined using Taqman technology. HCAs were estimated by using a meat preparation questionnaire on meat type, cooking method, and doneness, combined with a quantitative HCA database. Three hundred and fifty patients with breast cancer attending the Diagnostic Radiology Clinic at M. D. Anderson Cancer Center and fulfilling the eligibility criteria were compared to three hundred and fifty patients attending the same clinic for benign breast lesions to answer these questions. Logistic regression models were used to control for known risk factors and showed no statistically significant association between breast cancer versus benign breast cancer lesions and dietary intake of heterocyclic amines. There was no clear difference in their effect after subgroup analyses in different acetylator strata of NAT1/2 and no statistical interactions were found between NAT1/2 genotypes and HCAs, suggesting no effect modification by NAT1/2 acetylator status. These results suggest the need for further research to analyze if these null associations were because of the benign breast lesions sharing the risk factors with breast cancer or any other factors which haven't been explored yet.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acknowledgements This article was based on the first author’s PhD which was financed by the Malawi Health Research Capacity Strengthening Initiative. We thank Mr Patrick Naphini formerly of the Ministry of Health and Mrs Mafase Sesani at CHAM Secretariat for helping with the data. We also thank Mr Jacob Mazalale for useful comments on the article.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although adaptive evolution is thought to depend primarily on mutations of small effect, major gene effects may underlie many of the important differences observed among species in nature. The Mexican axolotl (Ambystoma mexicanum) has a derived mode of development that is characterized by metamorphic failure (paedomorphosis), an adaptation for an entirely aquatic life cycle. By using an interspecific crossing design and genetic linkage analysis, a major quantitative trait locus for expression of metamorphosis was identified in a local map of amplified fragment length polymorphisms. These data are consistent with a major gene hypothesis for the evolution of paedomorphosis in A. mexicanum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The database of imprinted genes and parent-of-origin effects in animals (http:// www.otago.ac.nz/IGC) is a collation of genes and phenotypes for which parent-of-origin effects have been reported. The database currently includes over 220 entries, which describe over 40 imprinted genes in human, mouse and other animals. In addition a wide variety of other parent-of-origin effects, such as transmission of human disease phenotypes, transmission of QTLs, uniparental disomies and interspecies crosses are recorded. Data are accessed through a search engine and references are hyperlinked to PubMed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain.