961 resultados para linkage disequilibrium (LD)
Resumo:
Background Autism spectrum conditions (ASC) are a group of conditions characterized by difficulties in communication and social interaction, alongside unusually narrow interests and repetitive, stereotyped behaviour. Genetic association and expression studies have suggested an important role for the GABAergic circuits in ASC. Syntaxin 1A (STX1A) encodes a protein involved in regulation of serotonergic and GABAergic systems and its expression is altered in autism. Methods In this study, the association between three single nucleotide polymorphisms (SNPs) (rs4717806, rs941298 and rs6951030) in STX1A gene and Asperger syndrome (AS) were tested in 650 controls and 479 individuals with AS, all of Caucasian ancestry. Results rs4717806 (P=0.00334) and rs941298 (P=0.01741) showed a significant association with AS, replicating previous results. Both SNPs putatively alter transcription factor binding sites both directly and through other variants in high linkage disequilibrium. Conclusions The current study confirms the role of STX1A as an important candidate gene in ASC. The exact molecular mechanisms through which STX1A contributes to the etiology remain to be elucidated.
Resumo:
Background: ABCA1 plays an important role in HDL metabolism. Single nucleotide polymorphisms (SNPs) in ABCA1 gene were associated with variation in plasina HDL-c. Methods: The effect of the ABCA1 SNPs C-14T, R219K and of a novel variant C-105T on serum lipids was investigated in 367 unrelated Brazilian individuals (224 hypercholesterolemic and 143 normolipidemic). The relation between ABCA1 SNPs and the lipid-lowering response to atorvastatin (10 mg/day/4 weeks) was also evaluated in 141 hypercholesterolemic (HC) individuals. The polymorphisms were detected by PCRR_FLP and confirmed by DNA sequencing. Results: Linkage disequilibrium was found between the SNPs C-105T and C-14T in the HC group. HC individuals carrying - 105CT/TT genotypes had higher serum HDL-c and lower triglyceride and VLDL-c concentrations as well as lower TG/HDL-c ratio compared to the -105CC carriers (p<0.05). The R219K SNP was associated with reduced serum triglyceride, VLDL-c and TG/HDL-c ratio in the HC group (p<0.05), and with an increased serum apoAI in NL individuals. The effects of ABCA1 SNPs on basal serum lipids of HC individuals were not modified by atorvastatin treatment. Conclusions: The ABCA1 SNPs R219K and C-105T were associated with a less atherogenic lipid profile but not with the lowering-cholesterol response to atorvastatin in a Brazilian population. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.
Resumo:
Background. Visceral leishmaniasis (VL) is caused by Leishmania donovani and Leishmania infantum chagasi. Genome-wide linkage studies from Sudan and Brazil identified a putative susceptibility locus on chromosome 6q27. Methods. Twenty-two single-nucleotide polymorphisms (SNPs) at genes PHF10, C6orf70, DLL1, FAM120B, PSMB1, and TBP were genotyped in 193 VL cases from 85 Sudanese families, and 8 SNPs at genes PHF10, C6orf70, DLL1, PSMB1, and TBP were genotyped in 194 VL cases from 80 Brazilian families. Family-based association, haplotype, and linkage disequilibrium analyses were performed. Multispecies comparative sequence analysis was used to identify conserved noncoding sequences carrying putative regulatory elements. Quantitative reverse-transcription polymerase chain reaction measured expression of candidate genes in splenic aspirates from Indian patients with VL compared with that in the control spleen sample. Results. Positive associations were observed at PHF10, C6orf70, DLL1, PSMB1, and TBP in Sudan, but only at DLL1 in Brazil (combined P = 3 x 10(-4) at DLL1 across Sudan and Brazil). No functional coding region variants were observed in resequencing of 22 Sudanese VL cases. DLL1 expression was significantly (P = 2 x 10(-7)) reduced (mean fold change, 3.5 [SEM, 0.7]) in splenic aspirates from patients with VL, whereas other 6q27 genes showed higher levels (1.27 x 10(-6) < P < .01) than did the control spleen sample. A cluster of conserved noncoding sequences with putative regulatory variants was identified in the distal promoter of DLL1. Conclusions. DLL1, which encodes Delta-like 1, the ligand for Notch3, is strongly implicated as the chromosome 6q27 VL susceptibility gene.
Resumo:
The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nona peptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Genetic diversity and population structure of Plasmodium viva-V parasites call predict the origin and Spread of novel Variants Within a population enabling Population specific malaria control measures. We analyzed the genetic diversity and population Structure of 425 P. vivax isolates from Sri Lanka, Myanmar, and Ethiopia using 12 trinucleotide and tetranucleotide microsatellite markers. All three parasite populations were highly polymorphic with 3-44 alleles per locus. Approximately 65% were multiple-clone infections. Mean genetic diversity (H(E)) was 0.7517 in Ethiopia, 0.8450 in Myanmar, and 0.8610 in Sri Lanka. Significant linkage disequilibrium Was maintained. Population structure showed two clusters (Asian and African) according to geography and ancestry Strong clustering of outbreak isolates from Sri Lanka and Ethiopia was observed. Predictive power of ancestry using two-thirds of the isolates as a model identified 78.2% of isolates accurately as being African or Asian. Microsatellite analysis is a useful tool for mapping short-term outbreaks of malaria and for predicting ancestry.
Resumo:
Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum Populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower Virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the Study period. We Suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.
Resumo:
The population structure of Plasmodium vivax remains elusive. The markers of choice for large-scale population genetic studies of eukaryotes, short tandem repeats known as microsatellites, have been recently reported to be less polymorphic in R vivax. Here we investigate the microsatellite diversity and geographic structure in P vivax, at both local and global levels, using 14 new markers consisting of tri- or tetranucleotide repeats. The local-level analysis, which involved 50 field isolates from Sri Lanka, revealed unexpectedly high diversity (average virtual heterozygosity [H-E], 0.807) and significant multilocus linkage disequilibrium in this region of low malaria endemicity. Multiple-clone infections occurred in 60% of isolates sampled in 2005. The global-level analysis of field isolates or monkey-adapted strains identified 150 unique haplotypes among 164 parasites from four continents. Individual P. vivax isolates could not be unambiguously assigned to geographic populations. For example, we found relatively low divergence among parasites from Central America, Africa, Southeast Asia and Oceania, but substantial differentiation between parasites from the same continent (South Asia and Southeast Asia) or even from the same country (Brazil). Parasite relapses, which may extend the duration of P. vivax carriage in humans, are suggested to facilitate the spread of strains across continents, breaking down any pre-existing geographic structure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature. Methods: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight. Results: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL. Conclusions: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed.
Resumo:
O monitoramento da diversidade genética é fundamental em um programa de repovoamento. Avaliouse a diversidade genética de pacu Piaractus mesopotamicus (Holmberg, 1887) em duas estações de piscicultura em Andirá -Paraná, Brasil, utilizadas no programa de repovoamento do Rio Paranapanema. Foram amplificados seis loci microssatélite para avaliar 60 amostras de nadadeira. O estoque de reprodutores B apresentou maior número de alelos e heterozigose (alelos: 22 e H O: 0,628) que o estoque de reprodutores A (alelos: 21 e H O: 0,600). Alelos com baixos níveis de frequência foram observados nos dois estoques. Os coeficientes positivos de endogamia no locus Pme2 (estoque A: F IS = 0,30 e estoque B: F IS = 0,20), Pme5 (estoque B: F IS = 0,15), Pme14 (estoque A: F IS = 0,07) e Pme28 (estoque A: F IS = 0,24 e estoque B: F IS = 0,20), indicaram deficiência de heterozigotos. Foi detectada a presença de um alelo nulo no lócus Pme2. As estimativas negativas nos loci Pme4 (estoque A: F IS = -0,43 e estoque B: F IS= -0,37), Pme5 (estoque A: F IS = - 0,11), Pme14 (estoque B: F IS = - 0,15) e Pme32 (estoque A: F IS = - 0,93 e estoque B: F IS = - 0,60) foram indicativas de excesso de heterozigotos. Foi evidenciado desequilíbrio de ligação e riqueza alélica baixa só no estoque A. A diversidade genética de Nei foi alta nos dois estoques. A distância (0,085) e identidade (0,918) genética mostraram similaridade entre os estoques, o qual reflete uma possível origem comum. 6,05% da variância genética total foi devida a diferenças entre os estoques. Foi observado um recente efeito gargalo nos dois estoques. Os resultados indicaram uma alta diversidade genética nos estoques de reprodutores e baixa diferenciação genética entre eles, o que foi causado pelo manejo reprodutivo das pisciculturas, redução do tamanho populacional e intercâmbio genético entre as pisciculturas.
Resumo:
Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cercus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species-B. thuringiensis or B. cereus-were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We describe the isolation and characterization of ten microsatellite loci from the red-winged tinamou (Rhynchotus rufescens) and also evaluated the cross-amplification of these loci and other ten loci previously developed for the great tinamou (Tinamus major) in other tinamous. Genetic variability was assessed using 24 individuals. Six loci were polymorphic with moderate to high number of alleles per locus (2-12 alleles) and showed expected heterozygosity (HE) ranging from 0.267 to 0.860. All loci conformed to the Hardy-Weinberg expectation and linkage disequilibrium was not significant for any pair of loci. This battery of polymorphic loci showed high paternity exclusion probability (0.986) and low genetic identity probability (4.95 x 10(-5)), proving to be helpful for parentage tests and population analyses in the red-winged tinamou. The cross-amplification was moderate where of the 160 locus/taxon combinations, 46 (28.75%) successfully amplified.
Resumo:
The morphologic appearance and clinical behavior of the human urinary bladder papillary transitional cell carcinoma (TCC) probably result from a complex interaction between carcinogenic insults and host resistance during the patient's life. While the main recognized risk factors are of environmental origin (e.g. smoking), relatively little information exists about the susceptibility to TCC development. The human leukocyte antigen G (HLA-G) molecule plays an important role in immune response regulation and has been implicated in the inhibition of the cytolytic function of natural killer and cytotoxic T cells. Several lines of evidence indicate that HLA-G polymorphisms influence the expression level and production of different HLA-G isoforms. The aim of this study was to explore a possible influence of the HLA-G polymorphism on the susceptibility to urinary bladder TCC development and progression in smokers and nonsmokers Brazilian subjects. The HLA-G locus was found to be associated with susceptibility to TCC development and progression. The G*0104 allelic group (specially the G*010404 allele) and the G*0103 allele were associated with a tobacco-dependent influence on TCC development. The G*0104 group was associated with progression to high-grade tumors, irrespective of smoking habit, while the G*0103 allele was associated to high-grade tumor only in smoking patients. Our results are an evidence that the HLA-G locus itself, or as part of an extended haplotype encompassing this chromosome region (particularly the HLA-A given the high linkage disequilibrium observed between them in this data series), may be associated with TCC susceptibility and tumor progression, suggesting a tobacco-dependent influence of these polymorphisms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)