924 resultados para linear feedback control


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rotating stall and surge, two instability mechanisms limiting the performance of aeroengines compressors, are studied on the third-order Moore-Greitzer model. The skewness of the compressor characteristic, a single parameter shape signifier, is shown to determine the key qualitative properties of feedback control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent theoretical frameworks such as optimal feedback control suggest that feedback gains should modulate throughout a movement and be tuned to task demands. Here we measured the visuomotor feedback gain throughout the course of movements made to "near" or "far" targets in human subjects. The visuomotor gain showed a systematic modulation over the time course of the reach, with the gain peaking at the middle of the movement and dropping rapidly as the target is approached. This modulation depends primarily on the proportion of the movement remaining, rather than hand position, suggesting that the modulation is sensitive to task demands. Model-predictive control suggests that the gains should be continuously recomputed throughout a movement. To test this, we investigated whether feedback gains update when the task goal is altered during a movement, that is when the target of the reach jumped. We measured the visuomotor gain either simultaneously with the jump or 100 ms after the jump. The visuomotor gain nonspecifically reduced for all target jumps when measured synchronously with the jump. However, the visuomotor gain 100 ms later showed an appropriate modulation for the revised task goal by increasing for jumps that increased the distance to the target and reducing for jumps that decreased the distance. We conclude that visuomotor feedback gain shows a temporal evolution related to task demands and that this evolution can be flexibly recomputed within 100 ms to accommodate online modifications to task goals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The active suppression of structural vibration is normally achieved by either feedforward or feedback control. In the absence of a suitable reference signal feedforward control cannot be employed and feedback control is the only viable approach. Conventional feedback control algorithms (e.g. LQR and LQG) are designed on the basis of a mathematical model of the system and ideally the performance of the system should be robust against uncertainties in this model. The aim of this paper is to numerically investigate the robustness of LQR and LQG algorithms by designing the controller for a nominal system, and then assessing (via Monte Carlo simulation) the effects of uncertainties in the system. The ultimate concern is with the control of high frequency vibrations, where the short wavelength of the structural deformation induces a high sensitivity to imperfection. It is found that standard algorithms such as LQR and LQG are generally unfeasible for this case. This leads to a consideration of design strategies for the robust active control of high frequency vibrations. The system chosen for the numerical simulation concerns two coupled plates, which are randomized by the addition of point masses at random locations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper is concerned with the identification of theoretical preview steering controllers using data obtained from five test subjects in a fixed-base driving simulator. An understanding of human steering control behaviour is relevant to the design of autonomous and semi-autonomous vehicle controls. The driving task involved steering a linear vehicle along a randomly curving path. The theoretical steering controllers identified from the data were based on optimal linear preview control. A direct-identification method was used, and the steering controllers were identified so that the predicted steering angle matched as closely as possible the measured steering angle of the test subjects. It was found that identification of the driver's time delay and noise is necessary to avoid bias in identification of the controller parameters. Most subjects' steering behaviour was predicted well by a theoretical controller based on the lateral/yaw dynamics of the vehicle. There was some evidence that an inexperienced driver's steering action was better represented by a controller based on a simpler model of the vehicle dynamics, perhaps reflecting incomplete learning by the driver. Copyright © 2014 Inderscience Enterprises Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force an IGBT to follow a pre-set switching trajectory. Previously, AVC was mainly used for controlling series-connected IGBTs in order to enable voltage balance between IGBTs. In this paper, the nonlinear IGBT turn-off transient is further discussed and the turnoff of a single IGBT under AVC is further optimised in order to meet the demand of Power Electronic Building Block (PEBB) applications. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force IGBT to follow a pre-set switching trajectory. The initial objective of AVC was mainly to synchronise the switching of IGBTs connected in series so as to realise voltage balancing between devices. For a single IGBT switching, the AVC reference needs further optimisation. Thus, a predictive manner of AVC reference generation is required to cope with the nonlinear IGBT switching parameters while performing low loss switching. In this paper, an improved AVC structure is adopted along with a revised reference which accommodates the IGBT nonlinearity during switching and is predictive based on current being switched. Experimental and simulation results show that close control of a single IGBT switching is realised. It is concluded that good performance can be obtained, but the proposed method needs careful stability analysis for parameter choice. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human motor system is remarkably proficient in the online control of visually guided movements, adjusting to changes in the visual scene within 100 ms [1-3]. This is achieved through a set of highly automatic processes [4] translating visual information into representations suitable for motor control [5, 6]. For this to be accomplished, visual information pertaining to target and hand need to be identified and linked to the appropriate internal representations during the movement. Meanwhile, other visual information must be filtered out, which is especially demanding in visually cluttered natural environments. If selection of relevant sensory information for online control was achieved by visual attention, its limited capacity [7] would substantially constrain the efficiency of visuomotor feedback control. Here we demonstrate that both exogenously and endogenously cued attention facilitate the processing of visual target information [8], but not of visual hand information. Moreover, distracting visual information is more efficiently filtered out during the extraction of hand compared to target information. Our results therefore suggest the existence of a dedicated visuomotor binding mechanism that links the hand representation in visual and motor systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

以利用线加速度传感器实际测量转动关节的加速度为基础 ,分析了机器人关节加速度反馈控制的开环模型 ,以及影响其闭环稳定性的主要因素 ;提出了闭环控制策略的设计准则 .在一台三自由度直接驱动机器人上的实验结果证明了该文分析的正确性 ,与不具备加速度反馈控制时的实验结果相比较 ,显示出这种方法的有效性

Relevância:

90.00% 90.00%

Publicador:

Resumo:

为工业机器人机械手提出了一种稳定跟踪控制法.这种控制方法由前馈控制器、反馈控制器组成.前馈控制根据期望轨线用计算力矩法得到;反馈控制由线性PID控制项和非线性PD控制项组成,这种控制方法能使跟踪误差逐渐趋近于零.最后,给出了PUMA560机器人的计算机仿真实验验证此控制方法的有效性

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the automatic synthesis of a global nonlinear controller for stabilizing a magnetic levitation system. The synthesized control system can stabilize the maglev vehicle with large initial displacements from an equilibrium, and possesses a much larger operating region than the classical linear feedback design for the same system. The controller is automatically synthesized by a suite of computational tools. This work demonstrates that the difficult control synthesis task can be automated, using programs that actively exploit knowledge of nonlinear dynamics and state space and combine powerful numerical and symbolic computations with spatial-reasoning techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic systems which undergo rapid motion can excite natural frequencies that lead to residual vibration at the end of motion. This work presents a method to shape force profiles that reduce excitation energy at the natural frequencies in order to reduce residual vibration for fast moves. Such profiles are developed using a ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral energy at the natural frequencies of the system. To improve robustness with respect to parameter uncertainty, spectral energy is reduced for a range of frequencies surrounding the nominal natural frequency. An additional set of versine profiles are also constructed to permit motion at constant speed for velocity-limited systems. These shaped force profiles are incorporated into a simple closed-loop system with position and velocity feedback. The force input is doubly integrated to generate a shaped position reference for the controller to follow. This control scheme is evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with minimum residual vibration when actuator saturation is avoided. Feedback control compensates for the effect of friction Using only a knowledge of the natural frequencies of the system to shape the force inputs, vibration can also be attenuated in modes which vibrate in directions other than the motion direction. When moving several axes, the use of shaped inputs allows minimum residual vibration even when the natural frequencies are dynamically changing by a limited amount.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a feedback control mechanism for the squeezing of the phononic mode of a mechanical oscillator. We show how, under appropriate working conditions, a simple adiabatic approach is able to induce mechanical squeezing. We then go beyond the limitations of such a working point and demonstrate the stationary squeezing induced by using repeated measurements and reinitialization of the state of a two-level system ancilla coupled to the oscillator. Our nonadaptive feedback loop offers interesting possibilities for quantum state engineering and steering in open-system scenarios.