891 resultados para linear and nonlinear systems identification
Resumo:
Self-tuning is applied to the control of nonlinear systems represented by the Hammerstein model wherein the nonlinearity is any odd-order polynomial. But control costing is not feasible in general. Initial relay control is employed to contain the deviations.
Resumo:
A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.
Resumo:
In this paper, we solve the distributed parameter fixed point smoothing problem by formulating it as an extended linear filtering problem and show that these results coincide with those obtained in the literature using the forward innovations method.
Resumo:
Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on is less restrictive than earlier criteria.
Resumo:
Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.
Resumo:
This paper deals with an approximate method of analysis of non-linear, non-conservative systems of two degrees of freedom. The approximate equations for amplitude and phase are obtained by a generalized averaging technique based on the ultraspherical polynomial approximation. The method is illustrated by an example of a spring-mass-damper system.
Resumo:
The scope of the differential transformation technique, developed earlier for the study of non-linear, time invariant systems, has been extended to the domain of time-varying systems by modifications to the differential transformation laws proposed therein. Equivalence of a class of second-order, non-linear, non-autonomous systems with a linear autonomous model of second order is established through these transformation laws. The feasibility of application of this technique in obtaining the response of such non-linear time-varying systems is discussed.
Resumo:
Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on $$\left( {{{\frac{{dk}}{{dt}}} \mathord{\left/ {\vphantom {{\frac{{dk}}{{dt}}} k}} \right. \kern-\nulldelimiterspace} k}} \right)$$ is less restrictive than earlier criteria.
Resumo:
The response of a third order non-linear system subjected to a pulse excitation is analysed. A transformation of the displacement variable is effected. The transformation function chosen is the solution of the linear problem subjected to the same pulse. With this transformation the equation of motion is brought into a form in which the method of variation of parameters is applicable for the solution of the problem. The method is applied to a single axis gyrostabilized platform subjected to an exponentially decaying pulse. The analytical results are compared with digital and analog computer solutions.
Resumo:
The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.
Resumo:
A general asymptotic method based on the work of Krylov-Bogoliubov is developed to obtain the response of nonlinear over damped systems. A second-order system with both roots real is treated first and the method is then extended to higher-order systems. Two illustrative examples show good agreement with results obtained by numerical integration.
Resumo:
In this paper, a new approach to the study of non-linear, non-autonomous systems is presented. The method outlined is based on the idea of solving the governing differential equations of order n by a process of successive reduction of their order. This is achieved by the use of “differential transformation functions”. The value of the technique presented in the study of problems arising in the field of non-linear mechanics and the like, is illustrated by means of suitable examples drawn from different fields such as vibrations, rigid body dynamics, etc.
Resumo:
The transient response of non-linear spring mass systems with Coulomb damping, when subjected to a step function is investigated. For a restricted class of non-linear spring characteristics, exact expressions are developed for (i) the first peak of the response curves, and (ii) the time taken to reach it. A simple, yet accurate linearization procedure is developed for obtaining the approximate time required to reach the first peak, when the spring characteristic is a general function of the displacement. The results are presented graphically in non-dimensional form.
Resumo:
Some new concepts characterizing the response of nonlinear systems are developed. These new concepts are denoted by the terms, the transient system equivalent, the response vector, and the space-phase components. This third concept is analyzed in comparison with the well-known technique of symmetrical components. The performance of a multiplicative feedback control system is represented by a nonlinear integro-differential equation; its solution is obtained by the principle of variation of parameters. The system response is treated as a vector and is resolved into its space-phase components. The individual effects of these components on the performance of the system are discussed. The suitability of the technique for the transient analysis of higher order nonlinear control systems is discussed.