970 resultados para light environment
Resumo:
Aim: The aim of this study was to evaluate with light microscopy the healing process of third-degree burns on diabetic rats treated with polarized light (lambda 400-2000 nm, 20 or 40 J/cm(2)/session, 40 mW/cm(2), 2.4 J/cm(2)/min, 5.5-cm beam diameter). Background: Uncontrolled diabetes mellitus causes severe disruption of the body's metabolism, including healing. Polarized light sources have been shown to be effective in improving healing in many situations. Animals and Methods: Diabetes mellitus was induced with streptozotocin (60 mg/kg) in 45 male Wistar albino rats, and a third-degree burn (1.5 by 1.5 cm) was created on the dorsum of each animal under general anesthesia. The animals were randomly distributed into three groups: control, 20 J/cm(2), and 40 J/cm(2). Each group was then divided into three subgroups based on time of death (7, 14, 21 d). Phototherapy (20 or 40 J/cm(2) per session) was carried out immediately after the burning and repeated daily until the day before death. Following animal death, specimens were removed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin (HE) or Sirius Red or immunomarked with CK AE1/AE3 antibody. Qualitative and semiquantitative analyses were performed under light microscopy. The results were statistically analyzed. Results: The animals treated with 20 J/cm(2) showed significant differences with regard to revascularization and re-epithelialization. Although the 40 J/cm(2) group showed stimulation of fibroblastic proliferation as an isolated feature, no other difference from the control was observed. Conclusion: Our results suggest that the use of polarized light at 20 J/cm(2) effectively improves the healing of third-degree burns on diabetic animals at both early and late stages of repair.
Resumo:
Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm(2)), infrared laser (780 nm, 40 mW, 1 W/cm(2)), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm(2)). All applications were punctual and performed with a spot with 0.4 mm(2) of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602850]
Resumo:
Context. Fossil systems are defined to be X- ray bright galaxy groups ( or clusters) with a two- magnitude difference between their two brightest galaxies within half the projected virial radius, and represent an interesting extreme of the population of galaxy agglomerations. However, the physical conditions and processes leading to their formation are still poorly constrained. Aims. We compare the outskirts of fossil systems with that of normal groups to understand whether environmental conditions play a significant role in their formation. We study the groups of galaxies in both, numerical simulations and observations. Methods. We use a variety of statistical tools including the spatial cross- correlation function and the local density parameter Delta(5) to probe differences in the density and structure of the environments of "" normal"" and "" fossil"" systems in the Millennium simulation. Results. We find that the number density of galaxies surrounding fossil systems evolves from greater than that observed around normal systems at z = 0.69, to lower than the normal systems by z = 0. Both fossil and normal systems exhibit an increment in their otherwise radially declining local density measure (Delta(5)) at distances of order 2.5 r(vir) from the system centre. We show that this increment is more noticeable for fossil systems than normal systems and demonstrate that this difference is linked to the earlier formation epoch of fossil groups. Despite the importance of the assembly time, we show that the environment is different for fossil and non- fossil systems with similar masses and formation times along their evolution. We also confirm that the physical characteristics identified in the Millennium simulation can also be detected in SDSS observations. Conclusions. Our results confirm the commonly held belief that fossil systems assembled earlier than normal systems but also show that the surroundings of fossil groups could be responsible for the formation of their large magnitude gap.
Resumo:
Aims. We study the geometry of the circumstellar environment of the B[e] supergiant star GG Car. Methods. We present observations acquired using the IAGPOL imaging polarimeter in combination with the Eucalyptus-IFU spectrograph to obtain spectropolarimetric measurements of GG Car across Ha at two epochs. Polarization effects along the emission line are analysed using the Q-U diagram. In particular, the polarization position angle (PA) obtained using the line effect is able to constrain the symmetry axis of the disk/envelope. Results. By analysing the fluxes, GG Car shows an increase in its double-peaked Ha line emission relative to the continuum within the interval of our measurements (similar to 43 days). The depolarization line effect around Ha is evident in the Q-U diagram for both epochs, confirming that light from the system is intrinsically polarized. A rotation of the PA along Ha is also observed, indicating a counter-clockwise rotating disk. The intrinsic PA calculated using the line effect (similar to 85 degrees.) is consistent between our two epochs, suggesting a clearly defined symmetry axis of the disk.
Resumo:
Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.
Resumo:
Context. Mass-loss occurring in red supergiants (RSGs) is a major contributor to the enrichment of the interstellar medium in dust and molecules. The physical mechanism of this mass loss is however relatively poorly known. Betelgeuse is the nearest RSG, and as such a prime object for high angular resolution observations of its surface (by interferometry) and close circumstellar environment. Aims. The goal of our program is to understand how the material expelled from Betelgeuse is transported from its surface to the interstellar medium, and how it evolves chemically in this process. Methods. We obtained diffraction-limited images of Betelgeuse and a calibrator (Aldebaran) in six filters in the N band (7.76 to 12.81 mu m) and two filters in the Q band (17.65 and 19.50 mu m), using the VLT/VISIR instrument. Results. Our images show a bright, extended and complex circumstellar envelope at all wavelengths. It is particularly prominent longwards of approximate to 9-10 mu m, pointing at the presence of O-rich dust, such as silicates or alumina. A partial circular shell is observed between 0.5 and 1.0 '' from the star, and could correspond to the inner radius of the dust envelope. Several knots and filamentary structures are identified in the nebula. One of the knots, located at a distance of 0.9 '' west of the star, is particularly bright and compact. Conclusions. The circumstellar envelope around Betelgeuse extends at least up to several tens of stellar radii. Its relatively high degree of clumpiness indicates an inhomogeneous spatial distribution of the material lost by the star. Its extension corresponds to an important intermediate scale, where most of the dust is probably formed, between the hot and compact gaseous envelope observed previously in the near infrared and the interstellar medium.
Resumo:
In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondonia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Angstrom exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70% of the absorption Angstrom exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Angstrom exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Angstrom exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Angstrom exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Angstrom exponents on 24-h aerosol forcings, at least in the spectral range of 450-880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.
Resumo:
The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.
Resumo:
The band-edge optical absorption in EuTe is studied in the framework of the 5d conduction band atomic model. Both relaxed antiferromagnetic order, and ferromagnetic order induced by an external magnetic field, were analyzed. For ferromagnetic arrangement, the absorption is characterized by a hugely dichroic doublet of narrow lines. In the antiferromagnetic order, the spectrum is blueshifted, becomes much broader and weaker, and dichroism is suppressed. These results are in excellent qualitative and quantitative agreement with experimental observations on EuTe and EuSe published by us previously [Phys. Rev. B 72, 155337 (2005)]. The possibility of inducing ferromagnetic order by illuminating the material at photon energies resonant with the band gap is also discussed.
Resumo:
Very low intensity and phase fluctuations are present in a bright light field such as a laser beam. These subtle quantum fluctuations may be used to encode quantum information. Although intensity is easily measured with common photodetectors, accessing the phase information requires interference experiments. We introduce one such technique, the rotation of the noise ellipse of light, which employs an optical cavity to achieve the conversion of phase to intensity fluctuations. We describe the quantum noise of light and how it can be manipulated by employing an optical resonance technique and compare it to similar techniques, such as Pound - Drever - Hall laser stabilization and homodyne detection. (c) 2008 American Association of Physics Teachers.
Resumo:
We show that scalable multipartite entanglement among light fields may be generated by optical parametric oscillators (OPOs). The tripartite entanglement existent among the three bright beams produced by a single OPO-pump, signal, and idler-is scalable to a system of many OPOs by pumping them in cascade with the same optical field. This latter serves as an entanglement distributor. The special case of two OPOs is studied, as it is shown that the resulting five bright beams share genuine multipartite entanglement. In addition, the structure of entanglement distribution among the fields can be manipulated to some degree by tuning the incident pump power. The scalability to many fields is straightforward, allowing an alternative implementation of a multipartite quantum information network with continuous variables.
Resumo:
Objective: The aim of this study was the evaluation of two different photosensitizers activated by red light emitted by light-emitting diodes (LEDs) in the decontamination of carious bovine dentin. Materials and Methods: Fifteen bovine incisors were used to obtain dentin samples which were immersed in brain-heart infusion culture medium supplemented with 1% glucose, 2% sucrose, and 1% young primary culture of Lactobacillus acidophilus 108 CFU/mL and Streptococcus mutans 108 CFU/mL for caries induction. Three different concentrations of the Photogem solution, a hematoporphyrin derivative (1, 2, and 3 mg/mL) and two different concentrations of toluidine blue O (TBO), a basic dye (0.025 and 0.1 mg/mL) were used. To activate the photosensitizers two different light exposure times were used: 60 sec and 120 sec, corresponding respectively to the doses of 24 J/cm(2) and 48 J/cm(2). Results: After counting the numbers of CFU per milligram of carious dentin, we observed that the use of LED energy in association with Photogem or TBO was effective for bacterial reduction in carious dentin, and that the greatest effect on S. mutans and L. acidophilus was obtained with TBO at 0.1 mg/mL and a dose of 48 J/cm(2). It was also observed that the overall toxicity of TBO was higher than that of Photogem, and that the phototoxicity of TBO was higher than that of Photogem. Conclusion: Based on our data we propose a mathematical model for the photodynamic effect when different photosensitizer concentrations and light doses are used.
Resumo:
By numerically calculating the relevant electromagnetic fields and charge current densities, we show how local charges and currents near subwavelength structures govern light transmission through subwavelength apertures in a real metal film. The illumination of a single aperture generates surface waves; and in the case of slits, generates them with high efficiency and with a phase close to - pi with respect to a reference standing wave established at the metal film front facet. This phase shift is due to the direction of induced charge currents running within the slit walls. The surface waves on the entrance facet interfere with the standing wave. This interference controls the profile of the transmission through slit pairs as a function of their separation. We compare the calculated transmission profile for a two-slit array to simple interference models and measurements [Phys. Rev. B 77(11), 115411 (2008)]. (C) 2011 Optical Society of America
Resumo:
Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.
Resumo:
We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival time in the general d-dimensional case. We then consider a simplified one-dimensional model (where transition probabilities and obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for the tail of the survival time. In addition, we study also the ""mixed"" probability measures (quenched with respect to the obstacles and annealed with respect to the transition probabilities and vice-versa) and give results for tails of the survival time with respect to these probability measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of Branching Random Walks in Random Environment (BRWRE).