960 resultados para leakage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a variant of the so-called Cascade protocol that is well-known for its usage as information reconciliation protocol in quantum cryptography. A theoretical analysis of the optimal size of the parity check blocks is provided. We obtain a very small leakage which is for block sizes of 2^16 typically only 2.5% above the Shannon limit, and notably, this holds for a QBER between 1% and 50%. For a QBER between 1% and 6% the leakage is only 2% above the Shannon limit. As comparison, the leakage of the original Cascade algorithm is 20% (40%) above the Shannon limit for a QBER of 10% (35%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (ΔQO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marré [1997] Bot Acta 110: 388–394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced ΔQO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited ΔQO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antifreeze glycoproteins (AFGPs), found in the blood of polar fish at concentrations as high as 35 g/liter, are known to prevent ice crystal growth and depress the freezing temperature of the blood. Previously, Rubinsky et al. [Rubinsky, B., Mattioli, M., Arav, A., Barboni, B. & Fletcher, G. L. (1992) Am. J. Physiol. 262, R542-R545] provided evidence that AFGPs block ion fluxes across membranes during cooling, an effect that they ascribed to interactions with ion channels. We investigated the effects of AFGPs on the leakage of a trapped marker from liposomes during chilling. As these liposomes are cooled through the transition temperature, they leak approximately 50% of their contents. Addition of less than 1 mg/ml of AFGP prevents up to 100% of this leakage, both during chilling and warming through the phase transition. This is a general effect that we show here applies to liposomes composed of phospholipids with transition temperatures ranging from 12 degrees C to 41 degrees C. Because these results were obtained with liposomes composed of phospholipids alone, we conclude that the stabilizing effects of AFGPs on intact cells during chilling reported by Rubinsky et al. may be due to a nonspecific effect on the lipid components of native membranes. There are other proteins that prevent leakage, but only under specialized conditions. For instance, antifreeze proteins, bovine serum albumin, and ovomucoid all either have no effect or actually induce leakage. Following precipitation with acetone, all three proteins inhibited leakage, although not to the extent seen with AFGPs. Alternatively, there are proteins such as ovotransferrin that have no effect on leakage, either before or after acetone precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon leakage is central to the discussion on climate policy, given the confluence of issues that are currently being debated, including the 2030 Energy and Climate Framework and the review of the EU carbon leakage list by 2014. Carbon leakage is the result of asymmetrical carbon policies, especially carbon pricing, and the resulting carbon cost, which affects the international competitive position of some EU industry and could displace production and/or investment, and the emissions of the activities displaced. This paper identifies the difference between carbon price and carbon cost to leakage exposed industry as one of two fundamental issues to be understood and addressed; lack of visibility on future climate policies and anti-leakage provisions is the other key issue. While this is a global issue, most of the experience has been accumulated in the EU. Carbon leakage is only one of the factors that could affect the competitive position of sectors, but it is difficult to attribute the impact of carbon costs versus other variables such as energy costs, labour, etc. Studies have predicted the risk of a significant amount of production leakage in a number of energy-intensive industries. To address the danger, they were included in the EU ETS carbon leakage list, which gave them access to free allowances. However, a limited number of studies undertaken after the end of the second trading period (2012) show little evidence of production leakage and asks the question whether the issue has not been blown out of proportion. The paper argues that the past may not be a good representation of the future, as it was heavily influenced by a high level of free allocation, the exceptional economic downturn, CO2 prices significantly below what was anticipated, as well as the potential for changes in some fundamental variables such as the shrinking pool of allowances available for free allocation. It emphasises the need for a well-informed debate in the EU on measures to address carbon leakage post-2020, underpinned by a number of options, and objective criteria to evaluate those options. It emphasises that the debate should cover both investment and production leakage, caused by both direct and indirect carbon costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This CEPS Special Report builds on the first deliverable of the project entitled “Carbon leakage: Options for the EU”. It identifies carbon costs, and the ability to pass through carbon costs, as the main risk factors that could lead from asymmetrical carbon policies to carbon leakage. It also outlines and evaluates, based on criteria discussed in the paper, options for detecting and mitigating the risk of carbon leakage in three jurisdictions, with special attention to the EU ETS (Emissions Trading Scheme). Based on the analysis of approaches currently used in a number of existing carbon pricing systems, it identifies the balance between the number of sectors identified as being at risk, and the amount of compensation provided as a risk mitigation measure, as the critical element in providing an optimum approach to address carbon leakage risks. It also identifies a risk-based approach to identifying sectors at risk as allowing for a better reflection of reality in a counterfactual argument. Finally, the paper concludes that while, with some exceptions, there has been limited carbon leakage until now, the past may not be a good reflection of the future and that measures need to be put in place for the post-2020 period. While examining a number of approaches, it identifies free allocation as the most likely way forward for mitigating the risk of carbon leakage. While other approaches may provide interesting options, they also present challenges for implementation, from a market functioning, to international trade and relations, points of view. A number of challenges will need to be addressed in the post-2020 period, with many of them part of the EU ETS structural reform package. Some of these challenges include, among others, the need to recognise, and provide for individual sectoral characteristics, as well as for changes in production patterns, due to economic cycles, and other factors. Finally, the paper emphasises the need for an open dialogue regarding the post-2020 provisions for carbon leakage as no overall Energy and Climate Package is likely to be agreed on until this matter is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medial penetration of the helical blade into the hip joint after fixation of trochanteric fractures using the proximal femur nail antirotation (PFN-A) is a potential failure mode. In low demand patients a blade exchange with cement augmentation may be an option if conversion to total hip arthroplasty is unfeasible to salvage the cut-through. This article describes a technique to avoid intraarticular cement leakage using a cement plug to close the defect in the femoral head caused by the cut-through.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leakage from field-grown wheat was investigated during two seasons differing considerably in their rainfall patterns. For all solutes analyzed, these losses were low from non-senescing plant parts, increased after the onset of senescence and became maximal in fully senesced (dry, brown) organs. The cumulative losses of potassium by leakage in the rain were 65% of the content at anthesis for the flag leaf and 95% for the third leaf from the top, while these relative values were lower for magnesium (50 to 80%) and calcium (around 55%) and extremely low for sodium (<10%). The differences between potassium and sodium may be due to a different compartmentation on the tissue level or on the subcellular level. It became evident that for certain nutrients (e.g. potassium or magnesium) leakage in the rain may represent a major loss from senescing leaves and can be a relevant flux in maturing wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"United States Atomic Energy Commission, Savannah River Operations Office, Contract AT (38-1) 213, supplements 1 & 2."