261 resultados para landslide
Resumo:
The uncertainties in the determination of the stratigraphic profile of natural soils is one of the main problems in geotechnics, in particular for landslide characterization and modeling. The study deals with a new approach in geotechnical modeling which relays on a stochastic generation of different soil layers distributions, following a boolean logic – the method has been thus called BoSG (Boolean Stochastic Generation). In this way, it is possible to randomize the presence of a specific material interdigitated in a uniform matrix. In the building of a geotechnical model it is generally common to discard some stratigraphic data in order to simplify the model itself, assuming that the significance of the results of the modeling procedure would not be affected. With the proposed technique it is possible to quantify the error associated with this simplification. Moreover, it could be used to determine the most significant zones where eventual further investigations and surveys would be more effective to build the geotechnical model of the slope. The commercial software FLAC was used for the 2D and 3D geotechnical model. The distribution of the materials was randomized through a specifically coded MatLab program that automatically generates text files, each of them representing a specific soil configuration. Besides, a routine was designed to automate the computation of FLAC with the different data files in order to maximize the sample number. The methodology is applied with reference to a simplified slope in 2D, a simplified slope in 3D and an actual landslide, namely the Mortisa mudslide (Cortina d’Ampezzo, BL, Italy). However, it could be extended to numerous different cases, especially for hydrogeological analysis and landslide stability assessment, in different geological and geomorphological contexts.
Resumo:
In 1996, a cadaver in adipocere condition was discovered in a bay of the Brienzer See in Switzerland. The torso was named "Brienzi" following the "Iceman" Ötzi. Several outer parts of the body were incrusted; the incrustation was in blue color. Further investigations showed that the bluish covering of parts of the adipocere torso were a mineral known as Vivianite. Vivianite (Fe(3)(PO(4))(2-)(H(2)O)(8)) is an iron phosphate mineral with needle lengths between 100 and 150μm. It is normally associated in a context with organic archaeological and geological materials (some hundreds to millions of years old). Hitherto, it is only described in three cases of human remains. We were able to reconstruct the following facts about 'Brienzi': The man drowned in Lake Brienz or in one of its tributaries during the 1700s. The body was subsequently covered with sedimentation and thus buried under water. An earthquake produced an underwater landslide which eventually exposed the corpse.
Resumo:
210Pb, 137Cs and 14C dated sediments of two late Holocene landslide lakes in the Provincial Park Lagunas de Yala (Laguna Rodeo, Laguna Comedero, 24°06′S, 65°30′W, 2100 m asl, northwestern Argentina) reveal a high-resolution multi-proxy data set of climate change and human impact for the past ca. 2000 years. Comparison of the lake sediment data set for the 20th century (sediment mass accumulation rates MARs, pollen spectra, nutrient and charcoal fluxes) with independent dendroecological data from the catchment (fire scars, tree growth) and long regional precipitation series (from 1934 onwards) show that (1) the lake sediment data set is internally highly consistent and compares well with independent data sets, (2) the chronology of the sediment is reliable, (3) large fires (1940s, 1983/1984–1989) as documented in the local fire scar frequency are recorded in the charcoal flux to the lake sediments and coincide with low wet-season precipitation rates (e.g., 1940s, 1983/1984) and/or high interannual precipitation variability (late 1940s), and (4) the regional increase in precipitation after 1970 is recorded in an increase in the MARs (L. Rodeo from 100 to 390 mg cm−2 yr−1) and in an increase in fern spores reflecting wet vegetation. The most significant change in MARs and nutrient fluxes (Corg and P) of the past 2000 years is observed with the transition from the Inca Empire to the Spanish Conquest around 1600 AD. Compared with the pre-17th century conditions, MARs increased by a factor of ca. 5 to >8 (to 800 +130, −280 mg cm−2 yr−1), PO4 fluxes increased by a factor of 7, and Corg fluxes by a factor of 10.5 for the time between 1640 and 1930 AD. 17th to 19th century MARs and nutrient fluxes also exceed 20th century values. Excess Pb deposition as indicated by a significant increase in Pb/Zr and Pb/Rb ratios in the sediments after the 1950s coincides with a rapid expansion of the regional mining industry. Excess Pb is interpreted as atmospheric deposition and direct human impact due to Pb smelting.
Resumo:
Maderas volcano is a small, andesitic stratovolcano located on the island of Ometepe, in Lake Nicaragua, Nicaragua with no record of historic activity. Twenty-one samples were collected from lava flows from Maderas in 2010. Selected samples were analyzed for whole-rock geochemical data using ICP-AES and/or were dated using the 40Ar/39Ar method. The results of these analyses were combined with previously collected data from Maderas as well as field observations to determine the eruptive history of the volcano and create a geologic map. The results of the geochemical analyses indicate that Maderas is a typical Central American andesitic volcano similar to other volcanoes in Nicaragua and Costa Rica and to its nearest neighbor, Concepción volcano. It is different from Concepción in one important way – higher incompatible elements. Determined age dates range from 176.8 ± 6.1 ka to 70.5 ± 6.1 ka. Based on these ages and the geomorphology of the volcano which is characterized by a bisecting graben, it is proposed that Maderas experienced two clear generations of development with three separate phases of volcanism: initial build-up of the older cone, pre-graben lava flows, and post-graben lava flows. The ages also indicate that Maderas is markedly older than Concepción which is historically active. Results were also analyzed regarding geologic hazards. The 40Ar/39Ar ages indicate that Maderas has likely been inactive for tens of thousands of years and the risk of future volcanic eruptions is low. However, earthquake, lahar and landslide hazards exist for the communities around the volcano. The steep slopes of the eroded older cone are the most likely source of landslide and lahar hazards.
Resumo:
Global environmental change includes changes in a wide range of global scale phenomena, which are expected to affect a number of physical processes, as well as the vulnerability of the communities that will experience their impact. Decision-makers are in need of tools that will enable them to assess the loss of such processes under different future scenarios and to design risk reduction strategies. In this paper, a tool is presented that can be used by a range of end-users (e.g. local authorities, decision makers, etc.) for the assessment of the monetary loss from future landslide events, with a particular focus on torrential processes. The toolbox includes three functions: a) enhancement of the post-event damage data collection process, b) assessment of monetary loss of future events and c) continuous updating and improvement of an existing vulnerability curve by adding data of recent events. All functions of the tool are demonstrated through examples of its application.
Resumo:
We explore the controls of the litho-tectonic architecture on the erosional flux in the 370-km2 Glogn basin (European Alps). In this basin, the bedding and schistosity of the bedrock dip parallel to the topographic slope on the NW valley flank, leading to a non-dip slope situation on the opposite SE valley side. While the dip slope condition has promoted the occurrence of landslides (e.g. the c. 30-km2 deep-seated Lumnezia landslide), the opposite non-dip slope side of the valley hosts >100-m-deeply incised tributary streams. 10Be concentrations of stream sediments yield catchment-averaged denudation rates that vary between 0.27 ± 0.03 and 2.19 ± 0.37 mm a−1, while the spatially averaged denudation rate of the entire basin is 1.99 ± 0.34 mm a−1. Our 10Be-based approach reveals that the Lumnezia landslide front contributes c. 30–65% of the entire sediment budget, although it covers <5% of the Glogn basin. This suggests a primary control of the bedrock bedding on erosion rates and processes.
Resumo:
Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.
Resumo:
According to the World Ocean Program in the northeastern part of the continental slope of the Black Sea geothermal, seismologic and seismic studies were carried out. An analysis of heat flow distribution allowed to distinguish a negative geothermal anomaly near the Dzhubga area, where the Russia-Turkey pipeline was being constructed. During seismological observations (August-September 1999, September 2001) more than 1200 seismic events were recorded. They proved high tectonic activity of the region under study, which stimulates gravitational sediment transport on the continental slope. The seismo-acoustic survey carried out in the area of the geothermal anomaly revealed no reflecting horizons within the sedimentary cover. This may be related to turbidite-landsliding processes. Results of modeling of the heat flow anomaly showed that it had originated approximately 1000 years ago due to a powerful landslide. This also suggests a possibility of an avalanche displacement of sedimentary masses in the area of the pipeline at present.
Resumo:
Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary décollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ~7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.
Resumo:
Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth >1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30-75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0-20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5-5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.
Resumo:
Several distinct, thin (2-7 cm), volcanic sand layers ("ashes") were recovered in the upper portions of Holes 842A and 842B. These holes were drilled 320 km west of the island of Hawaii on the outer side of the arch that surrounds the southern end of the Hawaiian chain. These layers are Pliocene to Pleistocene in age, graded, and contain fresh glass and mineral fragments (mainly olivine, plagioclase, and clinopyroxene) and tests of Pleistocene to Eocene radiolarians. The glass fragments are weakly vesicular and blocky to platy in shape. The glass and olivine fragments from individual layers have large ranges in composition (i.e, larger than expected for a single eruption). These features are inconsistent with an explosive eruption origin for the sands. The only other viable mechanism for transporting these sands hundreds of kilometers from their probable source, the Hawaiian Islands, is turbidity currents. These currents were probably related to several of the giant debris slides that were identified from Gloria sidescan images around the islands. These currents would have run over the ~500-m-high Hawaiian Arch on their way to Site 842. This indicates that the turbidity currents were at least 325 m thick. Paleomagnetic and biostratigraphic data allow the ages of the sands to be constrained and, thus, related to particular Hawaiian debris flows. These correlations were checked by comparing the compositions of the glasses from the sands with those of glasses and rocks from islands with debris flows directed toward Site 842. Good correlations were found for the 110-ka slide from Mauna Loa and the ~1.4-Ma slide from Lanai. The correlation with Kauai is poor, probably because the data base for that volcano is small. The low to moderate sulfur content of the sand glasses indicates that they were derived from moderately to strongly degassed lavas (shallow marine or subaerially erupted), which correlates well with the location of the landslide scars on the flanks of the Hawaiian volcanoes. The glass sands may have been formed by brecciation during the landslide events or spallation and granulation as lava erupted into shallow water.
Resumo:
In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.
Resumo:
Investigations of bottom sediments from the central and northern parts of the Norwegian Sea including study regions at the Storegga landslide, the Haakon Mosby mud volcano, and Knipovich Ridge were carried out. Concentration of n-alkanes in bottom sediments from these regions ranges from 0.53 to 22.1 µg/g of dry sediments that corresponds to 0.02-1.97% of Corg. Molecular composition of hydrocarbons indicates mixed allochtonous-authochtonous genesis of total organic matter (TOC) formed by hydrobiota and residuals of terrestrial plants. Terrigenous organic mater dominates in bottom sediments. Active redox, microbial and thermolytic processes of organic matter transformation take place in the sedimentary mass. Special character of chromatographic spectra of n-alkane distribution in both low and high-molecular ranges, as well as increased naphtene contents can be interpreted as a sign of oil hydrocarbon generation from maternal organic matter as a result of thermocatalytic reactions within sedimentary mass and their displacement into the upper sedimentary layers. Molecular compositions and concentrations of phenols and lignin were determined in core samples from the Norwegian Sea. Total concentration of phenols in the cores ranges from 8.1 to 101.8 (µg/g of dry sediments that corresponds to 0.15-1.15% of TOC. Lignin concentration was estimated at 21.0-459.0 µg/g of dry sediments (0.59-7.9% of ?org. Phenol compounds of p-hydroxybenzoic, vanillin, syringyl and cinnamyl families as basic components of lignin macromolecules were identified. It was found that sea currents and aerosols are the main contributors of lignin into the abyssal part of the Norwegian Sea.