993 resultados para iscas
Resumo:
The effects ofdisk flexibility and multistage coupling on the dynamics of bladed disks with and without blade mistuning are investigated. Both free and forced responses are examined using finite element representations of example single and two-stage rotor models. The reported work demonstrates the importance of proper treatment of interstage (stage-to-stage) boundaries in order to yield adequate capture of disk-blade modal interaction in eigenfrequency veering regions. The modified disk-blade modal interactions resulting from interstage-coupling-induced changes in disk flexibility are found to have a significant impact on (a) tuned responses due to excitations passing through eigenfrequency veering regions, and (b) a design's sensitivity to blade mistuning. Hence, the findings in this paper suggest that multistage analyses may be required when excitations are expected to fall in or near eigenfrequency veering regions or when the sensitivity to blade mistuning is to be accounted for Conversely, the observed sensitivity to disk flexibility also indicates that the severity of unfavorable structural interblade coupling may be reduced significantly by redesigning the disk(s) and stage-to-stage connectivity. The relatively drastic effects of such modifications illustrated in this work indicate that the design modifications required to alleviate veering-related response problems may be less comprehensive than what might have been expected.
Resumo:
Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.
Resumo:
A new adaptive state estimation algorithm, namely adaptive fading Kalman filter (AFKF), is proposed to solve the divergence problem of Kalman filter. A criterion function is constructed to measure the optimality of Kalman filter. The forgetting factor in AFKF is adaptively adjusted by minimizing the defined criterion function using measured outputs. The algorithm remains convergent and tends to be optimal in the presence of model errors. It has been successfully applied to the headbox of a paper-making machine for state estimation.
Resumo:
Most traditional satellite constellation design methods are associated with a simple zonal or global, continuous or discontinuous coverage connected with a visibility of points on the Earth's surface. A new geometric approach for more complex coverage of a geographic region is proposed. Full and partial coverage of regions is considered. It implies that, at any time, the region is completely or partially within the instantaneous access area of a satellite of the constellation. The key idea of the method is a two-dimensional space application for maps of the satellite constellation and coverage requirements. The space dimensions are right ascension of ascending node and argument of latitude. Visibility requirements of each region can be presented as a polygon and satellite constellation as a uniform moving grid. At any time, at least one grid vertex must belong to the polygon. The optimal configuration of the satellite constellation corresponds to the maximum sparse grid. The method is suitable for continuous and discontinuous coverage. In the last case, a vertex belonging to the polygon should be examined with a revisit time. Examples of continuous coverage for a space communication network and of the United States are considered. Examples of discontinuous coverage are also presented.
Resumo:
Various concepts have been proposed or used in the development of rheological models for debris flow. The earliest model developed by Bagnold was based on the concept of the “dispersive” pressure generated by grain collisions. Bagnold’s concept appears to be theoretically sound, but his empirical model has been found to be inconsistent with most theoretical models developed from non-Newtonian fluid mechanics. Although the generality of Bagnold’s model is still at issue, debris-flow modelers in Japan have generally accepted Takahashi’s formulas derived from Bagnold’s model. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold’s concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i.e., the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical, for general use in debris-flow modeling. In fact, Bagnold’s model is found to be only a particular case of the GVF model. Analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold’s simplified assumption of constant grain concentration.
Resumo:
The slide of unstable sedimentary bodies and their hydraulic effects are studied by numerical means. A two-dimensional fluid mechanics model based on Navier-Stokes equations has been developed considering the sediments and water as a mixture. Viscoplastic and diffusion laws for the sediments have been introduced into the model. The numerical model is validated with an analytical solution for a Bingham flow. Laboratory experiments consisting in the slide of gravel mass have been carried out. The results of these experiments have shown the importance of the sediment rheology and the diffusion. The model parameters are adjusted by trial and error to match the observed “sandflow”.
Resumo:
Almost free-standing single crystal mesoscale and nanoscale dots of ferroelectric BaTiO(3) have been made by direct focused ion beam patterning of bulk single crystal material. The domain structures which appear in these single crystal dots, after cooling through the Curie temperature, were observed to form into quadrants, with each quadrant consisting of fine 90 degrees stripe domains. The reason that these rather complex domain configurations form is uncertain, but we consider and discuss three possibilities for their genesis: first, that the quadrant features initially form to facilitate field-closure, but then develop 90 degrees shape compensating stripe domains in order to accommodate disclination stresses; second, that they are the result of the impingement of domain packets which nucleate at the sidewalls of the dots forming "Forsbergh" patterns (essentially the result of phase transition kinetics); and third, that 90 degrees domains form to conserve the shape of the nanodot as it is cooled through the Curie temperature but arrange into quadrant packets in order to minimize the energy associated with uncompensated surface charges (thus representing an equilibrium state). While the third model is the preferred one, we note that the second and third models are not mutually exclusive.
Resumo:
In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power.
Resumo:
Interpolation attack was presented by Jakobsen and Knudsen at FSE'97. Interpolation attack is effective against ciphers that have a certain algebraic structure like the PURE cipher which is a prototype cipher, but it is difficult to apply the attack to real-world ciphers. This difficulty is due to the difficulty of deriving a low degree polynomial relation between ciphertexts and plaintexts. In other words, it is difficult to evaluate the security against interpolation attack. This paper generalizes the interpolation attack. The generalization makes easier to evaluate the security against interpolation attack. We call the generalized interpolation attack linear sum attack. We present an algorithm that evaluates the security of byte-oriented ciphers against linear sum attack. Moreover, we show the relationship between linear sum attack and higher order differential attack. In addition, we show the security of CRYPTON, E2, and RIJNDAEL against linear sum attack using the algorithm.
Resumo:
We consider systems of equations of the form where A is the underlying alphabet, the Xi are variables, the Pi,a are boolean functions in the variables Xi, and each δi is either the empty word or the empty set. The symbols υ and denote concatenation and union of languages over A. We show that any such system has a unique solution which, moreover, is regular. These equations correspond to a type of automation, called boolean automation, which is a generalization of a nondeterministic automation. The equations are then used to determine the language accepted by a sequential network; they are obtainable directly from the network.
Resumo:
The propositional mu-calculus is a propositional logic of programs which incorporates a least fixpoint operator and subsumes the propositional dynamic logic of Fischer and Ladner, the infinite looping construct of Streett, and the game logic of Parikh. We give an elementary time decision procedure, using a reduction to the emptiness problem for automata on infinite trees. A small model theorem is obtained as a corollary.
Resumo:
Processing networks are a variant of the standard linear programming network model which are especially useful for optimizing industrial energy/environment systems. Modelling advantages include an intuitive diagrammatic representation and the ability to incorporate all forms of energy and pollutants in a single integrated linear network model. Added advantages include increased speed of solution and algorithms supporting formulation. The paper explores their use in modelling the energy and pollution control systems in large industrial plants. The pollution control options in an ethylene production plant are analyzed as an example. PROFLOW, a computer tool for the formulation, analysis, and solution of processing network models, is introduced.
Resumo:
Recursive specifications of domains plays a crucial role in denotational semantics as developed by Scott and Strachey and their followers. The purpose of the present paper is to set up a categorical framework in which the known techniques for solving these equations find a natural place. The idea is to follow the well-known analogy between partial orders and categories, generalizing from least fixed-points of continuous functions over cpos to initial ones of continuous functors over $\omega $-categories. To apply these general ideas we introduce Wand's ${\bf O}$-categories where the morphism-sets have a partial order structure and which include almost all the categories occurring in semantics. The idea is to find solutions in a derived category of embeddings and we give order-theoretic conditions which are easy to verify and which imply the needed categorical ones. The main tool is a very general form of the limit-colimit coincidence remarked by Scott. In the concluding section we outline how compatibility considerations are to be included in the framework. A future paper will show how Scott's universal domain method can be included too.
Resumo:
In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.