986 resultados para ir-spectra
Resumo:
Raman and infrared spectra are reported for rhodanine, 3-aminorhodanine and 3-methylrhodanine in the solid state. Comparisons of the spectra of non-deuterated/deuterated species facilitate discrimination of the bands associated with N-H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas-phase molecules, at the B3-LYP/cc-pVTZ and B3-PW91/cc-pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ~ 1713 and 1779 cm-1, whereas a Raman and IR band at ~ 1457 cm-1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3-aminorhodanine and 3-methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm-1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm-1 in the IR spectra, respectively.
Resumo:
Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.
Resumo:
We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic supernova 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 +/- 2.7 d. We find a peak B-band magnitude of M-B = -16.8, and light curves which are remarkably similar to the so-called "hypernova" SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 +/- 0.010 M-circle dot of Ni-56 was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between similar to 70 to 175 d relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about +400 d. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.
Resumo:
Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We present mid-infrared observations with the Spitzer Space Telescope of the nearby Type II-P supernova SN 2004dj at epochs of 89 - 129 days. We have obtained the first mid-IR spectra of any supernova apart from SN 1987A. A prominent [Ni II] 6.64 mu m line is observed, from which we deduce that the mass of stable nickel must be at least 2.2 x 10(-4) M-.. We also observe the red wing of the CO fundamental band. We relate our findings to possible progenitors and favor an evolved star, most likely a red supergiant, with a probable initial mass between similar to 10 and 15 M-..
Resumo:
Surface characterization of amorphous silica-alumina (ASA) by COads IR, pyridine(ads) IR, alkylamine temperature-programmed desorption (TPD), Cs+ and Cu(EDA)(2)(2+) exchange, H-1 NMR, and m-xylene isomerization points to the presence of a broad range of Bronsted and Lewis acid sites. Careful interpretation of IR spectra of adsorbed CO or pyridine confirms the presence of a few very strong Bronsted acid sites (BAS), typically at concentrations lower than 10 mu mol/g. The general procedure for alkylamine TPD, which probes both Bronsted and Lewis acidity, is modified to increase the selectivity to strong Bronsted acid sites. Poisoning of the m-xylene isomerization reaction by a base is presented as a novel method to quantify strong BAS. The surface also contains a weaker form of BAS, in concentrations between 50 and 150 mu mol/g, which can be quantified by COads IR Cu(EDA)(2)(2+) exchange also probes these sites. The structure of these sites remains unclear, but they might arise from the interaction of silanol groups with strong Lewis acid Al3+ sites. The surface also contains nonacidic aluminol and silanol sites (200-400 mu mol/g) and two forms of Lewis acid sites: (i) a weaker form associated with segregated alumina domains containing five-coordinated Al, which make up the interface between these domains and the ASA phase and (ii) a stronger form, which are undercoordinated Al sites grafted onto the silica surface. The acid catalytic activity in bifunctional n-heptane hydroconversion correlates with the concentration of strong BAS. The influence of the support electronegativity on the neopentane hydrogenolysis activity of supported Pt catalysts is considerably larger than that of the support Bronsted acidity. It is argued that strong Lewis acid sites, which are present in ASA but not in gamma-alumina, are essential to transmit the Sanderson electronegativity of the oxide support to the active Pt phase.
Resumo:
Thermal degradation and gaseous products evolving from the pyrolysis of sewage sludge, aimed at agricultural soil amendment, were investigated using Thermogravimetric Analysis in conjunction with Fourier Transform Infrared Analysis (TG-FTIR). The materials were studied in temperatures ranging from 30 to 800 ºC. Furthermore infrared spectra of sewage sludge samples were performed as a complementary technique. In parallel the sewage sludge was spiked with ibuprofen in order to test whether the mentioned techniques are able to detect the drug. Thermal analysis showed the range of 200-400ºC as the most characteristic for weight loss, corresponding with the organic matter volatilization, while the range of 500-800ºC was also characteristic and due to the volatilization of carbonates. On the other hand, ibuprofen-spiking tests identified at temperature range (150-250ºC) where the compound totally volatilizes, therefore, in this work, the detection of ibuprofen by TGA was established for concentrations higher than 0.5 g/kg sludge, concentration 102 times higher than the concentrations measured by other authors in regular sewage sludge (Martín, et al., 2010). A correlation has been found between the ibuprofen concentrations in the sludge and the intensity of the absorption bands, both for FT-IR spectra at the maximum emission temperature for ibuprofen (232ºC) as for the FT-IR spectra of the non-pyrolyzed samples.
Resumo:
Medicated shellac nanofibers providing colon-specific sustained release were fabricated using coaxial electrospinning. A solution of 7.5 g shellac and 1.5 g of ferulic acid (FA) in 10 mL ethanol was used as the core fluid, and a mixture of ethanol and N,N-dimethylformamide (8/10 v/v) as the shell. The presence of the shell fluid was required to prevent frequent clogging of the spinneret. The diameters of the fibers (D) can be manipulated by varying the ratio of shell to core flow rates (F), according to the equation D = 0.52F−0.19. Scanning electron microscopy images revealed that fibers prepared with F values of 0.1 and 0.25 had linear morphologies with smooth surfaces, but when the shell fluid flow rate was increased to 0.5 the fiber integrity was compromised. FA was found to be amorphously distributed in the fibers on the basis of X-ray diffraction and differential scanning calorimetry results. This can be attributed to good compatibility between the drug and carrier: IR spectra indicated the presence of hydrogen bonds between the two. In vitro dissolution tests demonstrated that there was minimal FA release at pH 2.0, and sustained release in a neutral dissolution medium. The latter occurred through an erosion mechanism. During the dissolution processes, the shellac fibers were gradually converted into nanoparticles as the FA was freed into solution, and ultimately completely dissolved.
Resumo:
In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under an ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)-g-EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)-g-EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.
Resumo:
The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.
Resumo:
The dielectric properties of vacuum-deposited europium oxide films have been investigated in the frequency range from 1 kHz to 1 MHz at various temperatures (300-543 K). The dielectric constant is found to depend on film thickness and it attains a constant value beyond 1000 Å. Films deposited at higher substrate temperatures (above 423 K) exhibit improved dielectric properties owing to the recovery of stoichiometry. The frequency variation of the loss factor exhibits a minimum which increases with rise in temperature. The breakdown field strength (about 106V cm-1) is found to be thickness dependent and it varies in accordance with the Forlani-Minnaja relation. The films exhibit ohmic conduction with an activation energy of 0.86 eV at low electric fields but at higher fields the conductivity becomes space charge limited. X-ray studies show that the films are amorphous in nature. The a.c. conductivity is proportional to ω at low frequency, whereas a square law dependence is observed at higher frequencies. The optical constants n, α and k and optical band gap are calculated from the UV-visible-near-IR spectra.
Resumo:
A new semicarbazone, HL has been synthesized from quinoline-2-carboxaldehyde and N4-phenyl-3- semicarbazide and structurally and spectrochemically characterized. 1H NMR, 13C NMR, IR and electronic spectra of the compound are studied. The existence of keto form in the solid state is supported by the crystal structure and IR data. The compound crystallizes into an orthorhombic space group P212121. Intra and intermolecular hydrogen bonding interactions facilitates unit cell packing in the crystal lattice
Resumo:
Five copper(II) complexes [CuLCl]2·CuCl2·4H2O (1), [CuLOAc] (2), [CuLNO3]2 (3), [CuLN3] (4) and [CuLNCS]·3/2H2O (5) of di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL) were synthesized and characterized by elemental analyses and electronic, infrared and EPR spectral techniques. In all these complexes the semicarbazone undergoes deprotonation and coordinates through enolate oxygen, azomethine and pyridyl nitrogen atoms. All the complexes are EPR active due to the presence of an unpaired electron. EPR spectra of all the complexes in DMF at 77K suggest axial symmetry and the presence of half field signals for the complexes 1 and 3 indicates dimeric structures
Resumo:
Raman and infrared spectra of Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7 are reported. The observed bands are assigned in terms of vibrations of NbO6 octahedra and PO4 tetrahedra in the first two compounds and in terms of NbO6 octahedra and P2O7 4− anion in the third compound. The NbO6 octahedra in all the title compounds are found to be corner-shared and distorted. The higher wavenumber values of the ν1 (NbO6) mode and other stretching modes indicate that the NbO6 octahedra in them are distorted in the order TlNbOP2O7 > Tl2NbO2PO4 > Tl3NaNb4O9(PO4)2. The splitting of the ν3 (PO4) mode indicates that PO4 tetrahedra is distorted more in Tl2NbO2PO4 than in Tl3NaNb4O9(PO4)2. The symmetry of P2O7 4− anion in TlNbOP2O7 is lowered. Bands indicate that the P–O–P bridge in the above compound has a bent P–O–P bridge configuration
Resumo:
Six new copper complexes of di-2-pyridyl ketone nicotinoylhydrazone (HDKN) have been synthesized. The complexes have been characterized by a variety of spectroscopic techniques and the structure of [Cu(DKN)2]·H2O has been determined by single crystal X-ray diffraction. The compound [Cu(DKN)2]·H2O crystallized in the monoclinic space group P21 and has a distorted octahedral geometry. The IR spectra revealed the presence of variable modes of chelation for the investigated ligand. The EPR spectra of compounds [Cu2(DKN)2( -N3)2] and [Cu2(DKN)2( -NCS)2] in polycrystalline state suggest a dimeric structure as they exhibited a half field signal, which indicate the presence of a weak interaction between two Cu(II) ions in these complexes