871 resultados para invasive species management


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spread of nonindigenous species into new habitats is having a drastic effect on natural ecosystems and represents an increasing threat to global biodiversity. In the marine environment, where data on the movement of invasive species is scarce, the spread of alien seaweeds represents a particular problem. We have employed a combination of plastid microsatellite markers and DNA sequence data from three regions of the plastid genome to trace the invasive history of the green alga Codium fragile ssp. tomentosoides. Extremely low levels of genetic variation were detected, with only four haplotypes present in the species’ native range in Japan and only two of these found in introduced populations. These invasive populations displayed a high level of geographical structuring of haplotypes, with one haplotype localized in the Mediterranean and the other found in Northwest Atlantic, northern European and South Pacific populations. Consequently, we postulate that there have been at least two separate introductions of C. fragile ssp. tomentosoides from its native range in the North Pacific.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While we can usually understand the impacts of invasive species on recipient communities, invasion biology lacks methodologies that are potentially more predictive. Such tools should ideally be straightforward and widely applicable. Here, we explore an approach that compares the functional responses (FRs) of invader and native amphipod crustaceans. Dikerogammarus villosus is a Ponto-Caspian amphipod currently invading Europe and poised to invade North America. Compared with other amphipods that it actively replaces in fresh-waters, D. villosus exhibited significantly greater predation, consuming significantly more prey with a higher type II FR. This corroborates the known dramatic field impacts of D. villosus on invaded communities. In another species, FRs were nearly identical in invasive and native ranges. We thus propose that if FRs of other taxa and trophic groups follow such general patterns, this methodology has potential in predicting future invasive species impacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Assessing the effects on communities of invasive species is often confounded by environmental factors. In Irish rivers, the introduced amphipod Gammarus pulex replaces the native G. duebeni celticus in lowland stretches. The two amphipods are associated with different macroinvertebrate communities, which may in part be the result of natural longitudinal physicochemical change. However, this hinders assessment of any direct community impacts of the invasive as compared with the native species. Here, we report on a fortuitous circumstance that allowed us to uncouple the community effects of Gammarus species from environmental differences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The common lizard (Zootoca vivipara) is Ireland’s only native reptile, forming a key part of the island’s biodiversity. However, there is a general paucity of distributional and abundance data for the species. In this study, we collated incidental records for common lizard sightings to define the distribution of the species in Northern Ireland. Maximum entropy modelling was employed to describe species-habitat associations. The resulting predicted landscape favourability was used to evaluate the current status of the species based on the distribution of its maximum potential range in relation to the degree of fragmentation of remaining suitable habitat. In common with previous studies in the Republic of Ireland, sightings were highly clustered indicating under-recording, observer bias, and fragmentation of suitable habitat. A total of 98 records were collated from 1905 to 2009. The species was recorded in 63 (ca. 34%) of 186 × 10 km Northern Irish grid squares. Lizard occurrence was strongly and positively associated with landscapes dominated by heathland, bog and coastal habitats. The single best approximating model correctly classified the presence of lizards in 84.2% of cases. Upland heath, lowland raised bog and sand dune systems are all subject to Habitat Action Plans in Northern Ireland and are threatened by conversion to agriculture, afforestation, invasive species encroachment and infrastructural development. Consequently, remaining common lizard populations are likely to be small, isolated and highly fragmented. Establishment of an ecological network to preserve connectivity of remaining heath and bog will not only benefit remaining common lizard populations but biodiversity in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Invasive species may threaten the fundamental role played by native macroinvertebrate shredders in determining energy flow and the trophic dynamics of freshwater ecosystems. Functionally, amphipods have long been regarded as mainly shredders, but they are increasingly recognized as major predators of other macroinvertebrate taxa. Furthermore, intraguild predation (IGP) between native and invasive amphipods underlies many species displacements. We used laboratory mesocosms to investigate what might happen to shredders and leaf-litter processing in water bodies invaded by the highly predatory Ponto-Caspian amphipod Dikerogammarus villosus, which is spreading rapidly throughout Europe and may soon invade the North American Great Lakes. The leaf-shredding efficiency of D. villosus was significantly lower than that of 3 Gammarus species (2 native and 1 invasive) that D. villosus has either already displaced or may be currently displacing in The Netherlands. In addition, D. villosus was a major predator of all of these native and invasive amphipod shredders and of a common isopod shredder Asellus aquaticus. Leaf processing in Gammarus and Asellus mesocosms declined rapidly in the presence of D. villosus and ceased altogether within 4 d because by then, all potential shredders had been killed and consumed. Furthermore, the shredding efficiency of surviving amphipods and isopods declined significantly within 2 d of the release of D. villosus, a result indicating that predator-avoidance behavior may override leaf processing. We discuss the implications of these direct and indirect effects of D. villosus invasions and species displacements on community structure and litter processing in aquatic ecosystems. © 2011 The North American Benthological Society.


--------------------------------------------------------------------------------

Reaxys Database Information|

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Not all introduced (invasive) species in a region will spread from a single point of introduction. Long-distance dispersal or further introductions can obscure the pattern of spread, but the regional importance of such processes is difficult to gauge. These difficulties are further compounded when information on the multiple scale process of invasive species range expansion is reduced to one-dimensional estimates of spread (e. g. km yr(-1)). We therefore compared the results of two different metrics of range expansion: maximum linear rate of spread and accumulation of occupied grid squares (50 x 50 km) over time. An analysis of records for 54 species of introduced marine macrophytes in the Mediterranean and northeast Atlantic revealed cases where the invasion process was probably missed (e. g. Atlantic Bonnemaisonia hamifera) and suggested cases of secondary introductions or erratic jump dispersal (Dasysiphonia sp. and Womersleyella setacea). A majority of species analysed showed evidence for an accumulation of invaded sites without a clear invasion front. Estimates of spread rate are increasing for more recent introductions. The increase is greater than can be accounted for by temporally varying search effort and implies a historical increase in vector efficiency and/or a decreased resistance of native communities to invasion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Empirical support for ‘invasional meltdown’, where the presence of one invading species facilitates another and compounds negative impacts on indigenous species, is equivocal with few convincing studies. In Ireland, the bank vole was introduced 80 years ago and now occupies a third of the island. The greater white-toothed shrew arrived more recently within the invasive range of the bank vole. We surveyed the abundance of both invasive species and two indigenous species, the wood mouse and pygmy shrew, throughout their respective ranges. The negative effects of invasive on indigenous species were strong and cumulative bringing about species replacement. The greater white-toothed shrew, the second invader, had a positive and synergistic effect on the abundance of the bank vole, the first invader, but a negative and compounding effect on the abundance of the wood mouse and occurrence of the pygmy shrew. The gradual replacement of the wood mouse by the bank vole decreased with distance from the point of the bank vole’s introduction whilst no pygmy shrews were captured where both invasive species were present. Such interactions may not be unique to invasions but characteristic of all multispecies communities. Small mammals are central in terrestrial food webs and compositional changes to this community in Ireland are likely to reverberate throughout the ecosystem. Vegetation composition and structure, invertebrate communities and the productivity of avian and mammalian predators are likely to be affected. Control of these invasive species may only be effected through landscape and habitat management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Invasive species pose a major threat to biodiversity but provide an opportunity to describe the processes that lead to changes in a species’ range. The bank vole (Myodes glareolus) is an invasive rodent that was introduced to Ireland in the early twentieth century. Given its continuing range expansion, the substantial empirical data on its spread thus far, and the absence of any eradication program, the bank vole in Ireland represents a unique model system for studying the mechanisms influencing the rate of range expansion in invasive small mammals. We described the invasion using a reaction–diffusion model informed by empirical data on life history traits and demographic parameters. We subsequently modelled the processes involved in its range expansion using a rule-based spatially explicit simulation. Habitat suitability interacted with density-dependent parameters to influence dispersal, most notably the density at which local populations started to donate emigrating individuals, the number of dispersing individuals and the direction of dispersal. Whilst local habitat variability influenced the rate of spread, on a larger scale the invasion resembled a simple reaction–diffusion process. Our results suggest a Type 1 range expansion where the rate of expansion is generally constant over time, but with some evidence for a lag period following introduction. We demonstrate that a two-parameter empirical model and a rule-based spatially explicit simulation are sufficient to accurately describe the invasion history of a species that exhibits a complex, density-dependent pattern of dispersal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forecasting the ecological impacts of invasive species is a major challenge that has seen little progress, yet the development of robust predictive approaches is essential as new invasion threats continue to emerge. A common feature of ecologically damaging invaders is their ability to rapidly exploit and deplete resources. We thus hypothesized that the 'functional response' (the relationship between resource density and consumption rate) of such invasive species might be of consistently greater magnitude than those of taxonomically and/or trophically similar native species. Here, we derived functional responses of the predatory Ponto-Caspian freshwater 'bloody red' shrimp, Hemimysis anomala, a recent and ecologically damaging invader in Europe and N. America, in comparison to the local native analogues Mysis salemaai and Mysis diluviana in Ireland and Canada, respectively. This was conducted in a novel set of experiments involving multiple prey species in each geographic location and a prey species that occurs in both regions. The predatory functional responses of the invader were generally higher than those of the comparator native species and this difference was consistent across invaded regions. Moreover, those prey species characterized by the strongest and potentially de-stabilizing Type II functional responses in our laboratory experiments were the same prey species found to be most impacted by H. anomala in the field. The impact potential of H. anomala was further indicated when it exhibited similar or higher attack rates, consistently lower prey handling times and higher maximum feeding rates compared to those of the two Mysis species, formerly known as 'Mysis relicta', which itself has an extensive history of foodweb disruption in lakes to which it has been introduced. Comparative functional responses thus merit further exploration as a methodology for predicting severe community-level impacts of current and future invasive species and could be entered into risk assessment protocols.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiversity continues to decline at a range of spatial scales and there is an urgent requirement to understand how multiple drivers interact in causing such declines. Further, we require methodologies that can facilitate predictions of the effects of such drivers in the future. Habitat degradation and biological invasions are two of the most important threats to biodiversity and here we investigate their combined effects, both in terms of understanding and predicting impacts on native species. The predatory largemouth bass Micropterus salmoides is one of the World’s Worst Invaders, causing declines in native prey species, and its introduction often coincides with habitat simplification. We investigated the predatory functional response, as a measure of ecological impact, of juvenile largemouth bass in artificial vegetation over a range of habitat complexities (high, intermediate, low and zero). Prey, the female guppy Poecilia reticulata, were representative of native fish. As habitats became less complex, significantly more prey were consumed, since, even although attack rates declined, reduced handling times resulted in higher maximum feeding rates by bass. At all levels of habitat complexity, bass exhibited potentially population destabilising Type II functional responses, with no emergence of more stabilising Type III functional responses as often occurs in predator-prey relationships in complex habitats. Thus, habitat degradation and simplification potentially exacerbate the impact of this invasive species, but even highly complex habitats may ultimately not protect native species. The utilisation of functional responses under varying environmental contexts provides a method for the understanding and prediction of invasive species impacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ecological effects of invasive species depend on myriad environmental contexts, rendering understanding problematic. Functional responses provide a means to quantify resource use by consumers over short timescales and could therefore provide insight into how the effects of invasive species vary over space and time. Here, we use novel in situ microcosm experiments to track changes in the functional responses of two aquatic mesopredators, one native and the other an invader, as they undergo diel vertical migrations through a lake water column.
The Ponto–Caspian mysid, Hemimysis anomala, a known ecologically damaging invader, generally had higher a functional response towards cladoceran prey than did a native trophic analogue, Mysis salemaai. However, this differential was spatiotemporally dependent, being minimal during the day on the lake bottom, and increasing at night, particularly inshore.
Because the functional response of the native predator was spatiotemporally consistent, the above pattern was driven by changes in the invader functional response over the diel cycle. In particular, the functional response of H. anomala was significantly reduced on the lake bottom during the daytime relative to night, and predation was especially pronounced in shallow surface waters.
We demonstrate the context dependency of the effects of an invasive predator on prey populations and emphasise the utility of functional responses as tools to inform our understanding of predator–prey interactions. In situ manipulations integrate experimental rigour with field relevance and have the potential to reveal how impacts manifest over a range of spatiotemporal scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological invasions continue to exert pressure on ecosystems worldwide and we thus require methods that can help understand and predict the impacts of invasive species, on both native species and previously established invaders. Comparing laboratory derived functional responses among invasive and native predators has emerged as one such method, providing a robust proxy for field impacts. We used this method to examine the likely impacts of the Ponto–Caspian amphipod Dikerogammarus haemobaphes, known as the “demon shrimp”, a little investigated invader in European freshwaters that has recently established in the British Isles. We compared the functional responses on two prey species of D. haemobaphes with two other amphipod species: Dikerogammarus villosus, a congeneric invasive with well-documented impacts on macro-invertebrate communities and a native amphipod, Gammarus pulex. Prey species were native Chironomus sp. and the invasive Chelicorophium curvispinum, a tube-building amphipod also originating from the Ponto–Caspian region. D. villosus showed higher Type II functional responses towards both prey species than did D. haemobaphes and G. pulex, with the latter two predators exhibiting similar impacts on the native prey. However, D. haemobaphes had higher functional responses towards the invasive C. curvispinum than did G. pulex, both when prey individuals were tubeless and resident in their protective mud tubes. Thus, we demonstrate that functionally equivalent invasive congeners can show significantly different impacts on prey, regardless of shared evolutionary history. We also show that some predatory invaders can have impacts on native prey equivalent to native predator impacts, but that they can also exert significant impacts on previously introduced prey. We discuss the importance of invasion history and prey identity when attempting to understand and predict the impacts of new invaders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.