992 resultados para invariant partition-functions
Resumo:
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
We demonstrate that the hyper-Rayleigh scattering technique can be employed to measure the partition coefficient (k(p)) of a solute in a mixture of two immiscible solvents. Specifically, partition coefficients of six substituted benzoic acids in water/toluene (1:1 v/v) and water/chloroform (1:1 v/v) systems have been measured. Our values compare well with the k(p) values measured earlier by other techniques, The advantages offered by this technique are also discussed.
Resumo:
While frame-invariant solutions for arbitrarily large rotational deformations have been reported through the orthogonal matrix parametrization, derivation of such solutions purely through a rotation vector parametrization, which uses only three parameters and provides a parsimonious storage of rotations, is novel and constitutes the subject of this paper. In particular, we employ interpolations of relative rotations and a new rotation vector update for a strain-objective finite element formulation in the material framework. We show that the update provides either the desired rotation vector or its complement. This rules out an additive interpolation of total rotation vectors at the nodes. Hence, interpolations of relative rotation vectors are used. Through numerical examples, we show that combining the proposed update with interpolations of relative rotations yields frame-invariant and path-independent numerical solutions. Advantages of the present approach vis-a-vis the updated Lagrangian formulation are also analyzed.
Resumo:
The appealing concept of optimal harvesting is often used in fisheries to obtain new management strategies. However, optimality depends on the objective function, which often varies, reflecting the interests of different groups of people. The aim of maximum sustainable yield is to extract the greatest amount of food from replenishable resources in a sustainable way. Maximum sustainable yield may not be desirable from an economic point of view. Maximum economic yield that maximizes the profit of fishing fleets (harvesting sector) but ignores socio-economic benefits such as employment and other positive externalities. It may be more appropriate to use the maximum economic yield that which is based on the value chain of the overall fishing sector, to reflect better society's interests. How to make more efficient use of a fishery for society rather than fishing operators depends critically on the gain function parameters including multiplier effects and inclusion or exclusion of certain costs. In particular, the optimal effort level based on the overall value chain moves closer to the optimal effort for the maximum sustainable yield because of the multiplier effect. These issues are illustrated using the Australian Northern Prawn Fishery.
Resumo:
Following Ioffe's method of QCD sum rules the structure functions F2(x) for deep inelastic ep and en scattering are calculated. Valence u-quark and d-quark distributions are obtained in the range 0.1 less, approximate x <0.4 and compared with data. In the case of polarized targets the structure function g1(x) and the asymmetry Image Full-size image are calculated. The latter is in satisfactory agreement in sign and magnitude with experiments for x in the range 0.1< x < 0.4.
Resumo:
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
Resumo:
Recent work on the violent relaxation of collisionless stellar systems has been based on the notion of a wide class of entropy functions. A theorem concerning entropy increase has been proved. We draw attention to some underlying assumptions that have been ignored in the applications of this theorem to stellar dynamical problems. Once these are taken into account, the use of this theorem is at best heuristic. We present a simple counter-example.
Resumo:
This thesis presents an interdisciplinary analysis of how models and simulations function in the production of scientific knowledge. The work is informed by three scholarly traditions: studies on models and simulations in philosophy of science, so-called micro-sociological laboratory studies within science and technology studies, and cultural-historical activity theory. Methodologically, I adopt a naturalist epistemology and combine philosophical analysis with a qualitative, empirical case study of infectious-disease modelling. This study has a dual perspective throughout the analysis: it specifies the modelling practices and examines the models as objects of research. The research questions addressed in this study are: 1) How are models constructed and what functions do they have in the production of scientific knowledge? 2) What is interdisciplinarity in model construction? 3) How do models become a general research tool and why is this process problematic? The core argument is that the mediating models as investigative instruments (cf. Morgan and Morrison 1999) take questions as a starting point, and hence their construction is intentionally guided. This argument applies the interrogative model of inquiry (e.g., Sintonen 2005; Hintikka 1981), which conceives of all knowledge acquisition as process of seeking answers to questions. The first question addresses simulation models as Artificial Nature, which is manipulated in order to answer questions that initiated the model building. This account develops further the "epistemology of simulation" (cf. Winsberg 2003) by showing the interrelatedness of researchers and their objects in the process of modelling. The second question clarifies why interdisciplinary research collaboration is demanding and difficult to maintain. The nature of the impediments to disciplinary interaction are examined by introducing the idea of object-oriented interdisciplinarity, which provides an analytical framework to study the changes in the degree of interdisciplinarity, the tools and research practices developed to support the collaboration, and the mode of collaboration in relation to the historically mutable object of research. As my interest is in the models as interdisciplinary objects, the third research problem seeks to answer my question of how we might characterise these objects, what is typical for them, and what kind of changes happen in the process of modelling. Here I examine the tension between specified, question-oriented models and more general models, and suggest that the specified models form a group of their own. I call these Tailor-made models, in opposition to the process of building a simulation platform that aims at generalisability and utility for health-policy. This tension also underlines the challenge of applying research results (or methods and tools) to discuss and solve problems in decision-making processes.
Resumo:
A geometrical structure called the implied minterm structure (IMS) has been developed from the properties of minterms of a threshold function. The IMS is useful for the manual testing of linear separability of switching functions of up to six variables. This testing is done just by inspection of the plot of the function on the IMS.
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
Domain-invariant representations are key to addressing the domain shift problem where the training and test exam- ples follow different distributions. Existing techniques that have attempted to match the distributions of the source and target domains typically compare these distributions in the original feature space. This space, however, may not be di- rectly suitable for such a comparison, since some of the fea- tures may have been distorted by the domain shift, or may be domain specific. In this paper, we introduce a Domain Invariant Projection approach: An unsupervised domain adaptation method that overcomes this issue by extracting the information that is invariant across the source and tar- get domains. More specifically, we learn a projection of the data to a low-dimensional latent space where the distance between the empirical distributions of the source and target examples is minimized. We demonstrate the effectiveness of our approach on the task of visual object recognition and show that it outperforms state-of-the-art methods on a stan- dard domain adaptation benchmark dataset
Resumo:
Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.