844 resultados para integrated model
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.
Resumo:
Testing of the Integrated Nitrogen model for Catchments (INCA) in a wide range of ecosystem types across Europe has shown that the model underestimates N transformation processes to a large extent in northern catchments of Finland and Norway in winter and spring. It is found, and generally assumed, that microbial activity in soils proceeds at low rates at northern latitudes during winter, even at sub-zero temperatures. The INCA model was modified to improve the simulation of N transformation rates in northern catchments, characterised by cold climates and extensive snow accumulation and insulation in winter, by introducing an empirical function to simulate soil temperatures below the seasonal snow pack, and a degree-day model to calculate the depth of the snow pack. The proposed snow-correction factor improved the simulation of soil temperatures at Finnish and Norwegian field sites in winter, although soil temperature was still underestimated during periods with a thin snow cover. Finally, a comparison between the modified INCA version (v. 1.7) and the former version (v. 1.6) was made at the Simojoki river basin in northern Finland and at Dalelva Brook in northern Norway. The new modules did not imply any significant changes in simulated NO3- concentration levels in the streams but improved the timing of simulated higher concentrations. The inclusion of a modified temperature response function and an empirical snow-correction factor improved the flexibility and applicability of the model for climate effect studies.
Resumo:
Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
This paper reviews the growing interest in an integrated construction project model, and examines the fundamental concept of an integrated project model by discussing the various definitions that have evolved as well as the various approaches to its development. The nature of collaborative communications that the integrated project model needs to support is also discussed, as are the enabling information and communications technologies that may have a role in the realization of the model. The paper concludes with some thoughts on the future development of the integrated construction project model.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
This paper examines the evolution of knowledge management from the initial knowledge migration stage, through adaptation and creation, to the reverse knowledge migration stage in international joint ventures (IJVs). While many studies have analyzed these stages (mostly focusing on knowledge transfer), we investigated the path-dependent nature of knowledge flow in IJVs. The results from the empirical analysis based on a survey of 136 Korean parent companies of IJVs reveal that knowledge management in IJVs follows a sequential, multi-stage process, and that the knowledge transferred from parents to IJVs must first be adapted within its new environment before it reaches the creation stage. We also found that only created knowledge is transferred back to parents.
Resumo:
Purpose - This paper aims to propose a model of production management that integrates knowledge management, as a third dimension, to the production and work dimensions and to identify factors that promote a favorable context for knowledge sharing and results achievement in the production operations shop floor environment.Design/methodology/approach - The model proposed is built from opportunities identified in the literature review.Findings - The factors in the model integrate its three main components: knowledge management, production organization and work organization, providing a representation of the dynamics of the workplace and shop floor environment.Practical implications - The proposed model and its factors allow managers to better understand and to improve the organization activities, because it integrates knowledge management with the production organization and work organization components of traditional models.Originality/value - Literature acknowledges the role of knowledge as competitive advantage, but it is still dealt in an implicit way within the traditional models of production management. This paper proposes a model and factors that provide a favorable context for tacit knowledge sharing and results achievement in the production operations shop floor environment. The model explicitly integrates knowledge management with traditional models' components.
Resumo:
The general objective of this work was to develop a monitoring and management model for aquatic plants that could be used in reservoir cascades in Brazil, using the reservoirs of AES-Tiete as a study case. The investigations were carried out at the reservoirs of Barra-Bonita, Bariri, Ibitinga, Promissao, and Nova-Avanhandava, located in the Tiete River Basin; Agua Vermelha, located in the Grande River Basin; Caconde, Limoeiro, and Euclides da Cunha, which are part of the Pardo River Basin; and the Mogi-Guacu reservoir, which belongs to the Mogi-Guacu River basin. The main products of this work were: development of techniques using satellite-generated images for monitoring and planning aquatic plant control; planning and construction of a boat to move floating plant masses and an airboat equipped with a DGPS navigation and application flow control system. Results allowed to conclude that the occurrence of all types of aquatic plants is directly associated with sedimentation process and, consequently, with nutrient and light availability. Reservoirs placed at the beginning of cascades are more subject to sedimentation and occurrence of marginal, floating and emerged plants, and are the priority when it comes to controlling these plants, since they provide a supply of weeds for the other reservoirs. Reservoirs placed downstream show smaller amounts of water-suspended solids, with greater transmission of light and occurrence of submerged plants.
Resumo:
This paper aims to examine the relevance of a production management model, in the shop-floor operations environment, that integrates the dimensions of production organisation (lean and mass production), work organisation (enriched and semi-autonomous groups) and knowledge management. A theoretical model has been applied to automotive companies to verify model adherence. Each of those dimensions has been described by factors. Shop-floor personnel interviews were conducted to confirm the factors relevance to that company. Results have shown that the model represented the reality of those companies concerning the researched dimensions. The factors allow managers to promote a favourable context for knowledge sharing. © 2010 Inderscience Enterprises Ltd.