742 resultados para integrated computer-based learning aids
Resumo:
As a global profession, engineering is integral to the maintenance and further development of society. Indeed, contemporary social problems requiring engineering solutions are not only a consequence of natural and ‘manmade’ disasters (such as the Japanese earthquake or the oil leakage in the Gulf of Mexico) but also encapsulate 21st Century dilemmas around sustainability, poverty and pollution [2,6,7]. Given the complexity of such problems and the constant need for innovation, the demand for engineering education to provide a ready supply of suitably qualified engineering graduates, able to make innovative decisions has never been higher [3,5]. Bearing this in mind, and taking account problems of attrition in engineering education [1,6,4] innovation in the way in which the curriculum is developed and delivered is crucial. CDIO [Conceive, Design, Implement, Operate] provides a potentially ground-breaking solution to such dilemmas. Aimed at equipping students with practical engineering skills supported by the necessary theoretical background, CDIO could potentially change the way engineering is perceived and experienced within higher education. Aston University introduced CDIO into its Mechanical Engineering and Design programmes in October 2011. From its induction, engineering education researchers have ‘shadowed’ the staff responsible for developing and teaching the programme. Utilising an Action Research Design, and adopting a mixed methodological research design, the researchers have worked closely with the teaching team to critically reflect on the processes involved in introducing CDIO into the curriculum. Concurrently, research has been conducted to capture students’ perspectives of CDIO. In evaluating the introduction of CDIO at Aston, the researchers have developed a distinctive research strategy with which to evaluate CDIO. It is the emergent findings from this research that form the basis of this paper. Although early-on in its development CDIO is making a significant difference to engineering education at the University. The paper draws attention to pedagogical, practical and professional issues – discussing each one in turn and in doing so critically analysing the value of CDIO from academic, student and industrial perspectives. The paper concludes by noting that whilst CDIO represents a forwardthinking approach to engineering education, the need for constant innovation in learning and teaching should not be forgotten. Indeed, engineering education needs to put itself at the forefront of pedagogic practice. Providing all-rounded engineers, ready to take on the challenges of the 21st Century!
Resumo:
This paper seeks to advance research and practice related to the role of employers in all stages of the assessment process of work-based learning (WBL) within a tripartite relationship of higher education institution (HEI), student and employer. It proposes a research-informed quality enhancement framework to develop good practice in engaging employers as partners in assessment. The Enhancement Framework comprises three dimensions, each of which includes elements and questions generated by the experiences of WBL students, HEI staff and employers. The three dimensions of the Enhancement Framework are: 1. ‘premises of assessment’ encompassing issues of learning, inclusion, standards and value; 2. ‘practice’, encompassing stages of assessment made up of course design, assessment task, responsibilities, support, grading and feedback; 3. ‘communication of assessment’ with the emphasis on role clarity, language and pathways. With its prompt questions, the Enhancement Framework may be used as a capacity-building tool for promoting, sustaining, benchmarking and evaluating productive dialogue and critical reflection about assessment between WBL partners. The paper concludes by emphasising the need for professional development as well as policy and research development, so that assessment in WBL can more closely correspond to the potentially transformative nature of the learning experience.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.
Resumo:
This article reports on an investigationwith first year undergraduate ProductDesign and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem which involved designing a simple bridge to cross a river.They were given a talk on problemsolving and given a rubric to follow, if they chose to do so.They were not given any formulae or procedures needed in order to resolve the problem. In theory, they possessed the knowledge to ask the right questions in order tomake assumptions but, in practice, it turned out they were unable to link their a priori knowledge to resolve this problem. They were able to solve simple beam problems when given closed questions. The results show they were unable to visualize a simple bridge as an augmented beam problem and ask pertinent questions and hence formulate appropriate assumptions in order to offer resolutions.