865 resultados para integer optimization
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.
Resumo:
As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.
Resumo:
In this work we solve Mathematical Programs with Complementarity Constraints using the hyperbolic smoothing strategy. Under this approach, the complementarity condition is relaxed through the use of the hyperbolic smoothing function, involving a positive parameter that can be decreased to zero. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.
Resumo:
In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented.
Resumo:
Mestrado em Engenharia Informática
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.