941 resultados para indirect quantification
Resumo:
Dissecting drivers of plant defence investment remains central for understanding the assemblage of communities across different habitats. There is increasing evidence that direct defence strategies against herbivores, including secondary metabolites production, differ along ecological gradients in response to variation in biotic and abiotic conditions. In contrast, intraspecific variation in indirect defences remains unexplored. Here, we investigated variation in herbivory rate, resistance to herbivores, and indirect defences in ant-attracting Vicia species along the elevation gradient of the Alps. Specifically, we compared volatile organic compounds (VOCs) and ant attraction in high and low elevation ecotypes. Consistent with adaptation to the lower herbivory conditions that we detected at higher elevations in the field, high elevation plants were visited by fewer ants and were more susceptible to herbivore attack. In parallel, constitutive volatile organic compound production and subsequent ant attraction were lower in the high elevation ecotypes. We observed an elevation-driven trade-off between constitutive and inducible production of VOCs and ant attraction along the environmental cline. At higher elevations, inducible defences increased, while constitutive defence decreased, suggesting that the high elevation ecotypes compensate for lower indirect constitutive defences only after herbivore attack. Synthesis. Overall, direct and indirect defences of plants vary along elevation gradients. Our findings show that plant allocation to defences are subject to trade-offs depending on local conditions, and point to a feedback mechanism linking local herbivore pressure, predator abundance and the defence investment of plants.
Resumo:
Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it
Resumo:
Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, post-prandial state, etc.). It should be recalled that indirect calorimetry provides an index of overall substrate disappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production by indirect calorimetry, through use of direct calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.
Resumo:
This paper presents value added estimates for the Italian regions, in benchmark years from 1891 until 1951, which are linked to those from official figures available from 1971 in order to offer a long-term picture. Sources and methodology are documented and discussed, whilst regional activity rates and productivity are also presented and compared. Thus some questions are briefly reconsidered: the origins and extent of the north-south divide, the role of migration and regional policy in shaping the pattern of regional inequality, the importance of social capital, and the positioning of Italy in the international debate on regional convergence, where it stands out for the long run persistence of its disparities.
Resumo:
Given a sample from a fully specified parametric model, let Zn be a given finite-dimensional statistic - for example, an initial estimator or a set of sample moments. We propose to (re-)estimate the parameters of the model by maximizing the likelihood of Zn. We call this the maximum indirect likelihood (MIL) estimator. We also propose a computationally tractable Bayesian version of the estimator which we refer to as a Bayesian Indirect Likelihood (BIL) estimator. In most cases, the density of the statistic will be of unknown form, and we develop simulated versions of the MIL and BIL estimators. We show that the indirect likelihood estimators are consistent and asymptotically normally distributed, with the same asymptotic variance as that of the corresponding efficient two-step GMM estimator based on the same statistic. However, our likelihood-based estimators, by taking into account the full finite-sample distribution of the statistic, are higher order efficient relative to GMM-type estimators. Furthermore, in many cases they enjoy a bias reduction property similar to that of the indirect inference estimator. Monte Carlo results for a number of applications including dynamic and nonlinear panel data models, a structural auction model and two DSGE models show that the proposed estimators indeed have attractive finite sample properties.
Resumo:
Coronary artery calcification (CAC) is quantified based on a computed tomography (CT) scan image. A calcified region is identified. Modified expectation maximization (MEM) of a statistical model for the calcified and background material is used to estimate the partial calcium content of the voxels. The algorithm limits the region over which MEM is performed. By using MEM, the statistical properties of the model are iteratively updated based on the calculated resultant calcium distribution from the previous iteration. The estimated statistical properties are used to generate a map of the partial calcium content in the calcified region. The volume of calcium in the calcified region is determined based on the map. The experimental results on a cardiac phantom, scanned 90 times using 15 different protocols, demonstrate that the proposed method is less sensitive to partial volume effect and noise, with average error of 9.5% (standard deviation (SD) of 5-7mm(3)) compared with 67% (SD of 3-20mm(3)) for conventional techniques. The high reproducibility of the proposed method for 35 patients, scanned twice using the same protocol at a minimum interval of 10 min, shows that the method provides 2-3 times lower interscan variation than conventional techniques.
Resumo:
OBJECTIVE: To assess the impact of nonuniform dose distribution within lesions and tumor-involved organs of patients receiving Zevalin, and to discuss possible implications of equivalent uniform biological effective doses (EU-BED) on treatment efficacy and toxicity. MATLAB? -based software for voxel-based dosimetry was adopted for this purpose. METHODS: Eleven lesions from seven patients with either indolent or aggressive non-Hodgkin lymphoma were analyzed, along with four organs with disease. Absorbed doses were estimated by a direct integration of single-voxel kinetic data from serial tomographic images. After proper corrections, differential BED distributions and surviving cell fractions were estimated, allowing for the calculation of EU-BED. To quantify dose uniformity in each target area, a heterogeneity index was defined. RESULTS: Average doses were below those prescribed by conventional radiotherapy to eradicate lymphoma lesions. Dose heterogeneity and effect on tumor control varied among lesions, with no apparent relation to tumor mass. Although radiation doses to involved organs were safe, unexpected liver toxicity occurred in one patient who presented with a pattern of diffuse infiltration. CONCLUSION: Voxel-based dosimetry and radiobiologic modeling can be successfully applied to lesions and tumor-involved organs, representing a methodological advance over estimation of mean absorbed doses. However, effects on tumor control and organ toxicity still cannot be easily predicted.
Resumo:
An enzyme-linked immunosorbent assay was standardized for the detection of cryptococcal antigen in serum and cerebrospinal fluid. The system was evaluated in clinical samples from patients infected by human immunodeficiency virus with and without previous cryptococcosis diagnosis. The evaluated system is highly sensitive and specific, and when it was compared with latex agglutination there were not significant differences. A standard curve with purified Cryptococcus neoformans antigen was settled down for the antigen quantification in positive samples.
Resumo:
A comparative study of the indirect haemagglutination (IHA), immunofluorescence (IFAT) and immunoenzymatic (ELISA) tests was carried out to determine the prevalence of Toxoplasma gondii antibodies in goats. One hundred seventy-four serum samples were obtained from four goat herds from the region of Uberlândia, State of Minas Gerais. The distribution of the animals, according to their origin, was as follow: 71 from herd I; 39 from herd II; 37 from herd III; and 27 from herd IV. Serum samples were analyzed by IHA, IFAT and ELISA, considering the reactivity of the serum samples at dilution ≥ 1:64 as cut off titer for the three tests. A global seroprevalence of 18.4% was observed, with significantly higher positivity rate in the herd II (66.7%) and older animals (> 36 months). A high and significant positive correlation was found between the titers obtained by the IHA versus IFAT, IHA versus ELISA, and ELISA versus IFAT. Therefore, it can be concluded that the three analyzed tests have shown to be highly concordant and appropriate for epidemiological surveys of Toxoplasma infection in goats. Although the seroprevalence of T. gondii infection in goats is relatively low in this region as compared to other regions of the country, adequate management might be useful and essential to control the infection in the goat herds.
Resumo:
Evidence has emerged that the initiation and growth of gliomas is sustained by a subpopulation of cancer-initiating cells (CICs). Because of the difficulty of using markers to tag CICs in gliomas, we have previously exploited more robust phenotypic characteristics, including a specific morphology and intrincic autofluorescence, to identify and isolate a subpopulation of glioma CICs, called FL1(+). The objective of this study was to further validate our method in a large cohort of human glioma and a mouse model of glioma. Seventy-four human gliomas of all grades and the GFAP-V(12)HA-ras B8 mouse model were analyzed for in vitro self-renewal capacity and their content of FL1(+). Nonneoplastic brain tissue and embryonic mouse brain were used as control. Genetic traceability along passages was assessed with microsatellite analysis. We found that FL1(+) cells from low-grade gliomas and from control nonneoplasic brain tissue show a lower level of autofluorescence and undergo a restricted number of cell divisions before dying in culture. In contrast, we found that FL1(+) cells derived from many but not all high-grade gliomas acquire high levels of autofluorescence and can be propagated in long-term cultures. Moreover, FL1(+) cells show a remarkable traceability over time in vitro and in vivo. Our results show that FL1(+) cells can be found in all specimens of a large cohort of human gliomas of different grades and in a model of genetically induced mouse glioma as well as nonneoplastic brain. However, their self-renewal capacity is variable and seems to be dependent on the tumor grade.
Resumo:
Gim & Kim (1998) proposed a generalization of Jeong (1982, 1984) reinterpretation of the Hawkins-Simon condition for macroeconomic stability to off-diagonal matrix elements. This generalization is conceptually relevant for it offers a complementary view of interindustry linkages beyond final or net output influence. The extension is completely similar to the 'total flow' idea introduced by Szyrmer (1992) or the 'output-to-output' multiplier of Miller & Blair (2009). However the practical implementation of Gim & Kim is actually faulty since it confuses the appropriate order of output normalization. We provide a new and elementary solution for the correct formalization using standard interindustry accounting concepts.
Resumo:
Introduction Lesion detection in multiple sclerosis (MS) is an essential part of its clinical diagnosis. In addition, radiological characterisation of MS lesions is an important research field that aims at distinguishing different MS types, monitoring drug response and prognosis. To date, various MR protocols have been proposed to obtain optimal lesion contrast for early and comprehensive diagnosis of the MS disease. In this study, we compare the sensitivity of five different MR contrasts for lesion detection: (i) the DIR sequence (Double Inversion Recovery, [4]), (ii) the Dark-fluid SPACE acquisition schemes, a 3D variant of a 2D FLAIR sequence [1], (iii) the MP2RAGE [2], an MP-RAGE variant that provides homogeneous T1 contrast and quantitative T1-values, and the sequences currently used for clinical MS diagnosis (2D FLAIR, MP-RAGE). Furthermore, we investigate the T1 relaxation times of cortical and sub-cortical regions in the brain hemispheres and the cerebellum at 3T. Methods 10 early-stage female MS patients (age: 31.64.7y; disease duration: 3.81.9y; disability score, EDSS: 1.80.4) and 10 healthy controls (age and gender-matched: 31.25.8y) were included in the study after obtaining informed written consent according to the local ethic protocol. All experiments were performed at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil [5]. The imaging protocol included the following sequences, (all except for axial FLAIR 2D with 1x1x1.2 mm3 voxel and 256x256x160 matrix): DIR (TI1/TI2/TR XX/3652/10000 ms, iPAT=2, TA 12:02 min), MP-RAGE (TI/TR 900/2300 ms, iPAT=3, TA 3:47 min); MP2RAGE (TI1/TI2/TR 700/2500/5000 ms, iPAT=3, TA 8:22 min, cf. [2]); 3D FLAIR SPACE (only for patient 4-6, TI/TR 1800/5000 ms, iPAT=2, TA=5;52 min, cf. [1]); Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix, TI/TR 2500/9000 ms, iPAT=2, TA 4:05 min). Lesions were identified by two experienced neurologist and radiologist, manually contoured and assigned to regional locations (s. table 1). Regional lesion masks (RLM) from each contrast were compared for number and volumes of lesions. In addition, RLM were merged in a single "master" mask, which represented the sum of the lesions of all contrasts. T1 values were derived for each location from this mask for patients 5-10 (3D FLAIR contrast was missing for patient 1-4). Results & Discussion The DIR sequence appears the most sensitive for total lesions count, followed by the MP2RAGE (table 1). The 3D FLAIR SPACE sequence turns out to be more sensitive than the 2D FLAIR, presumably due to reduced partial volume effects. Looking for sub-cortical hemispheric lesions, the DIR contrast appears to be equally sensitive to the MP2RAGE and SPACE, but most sensitive for cerebellar MS plaques. The DIR sequence is also the one that reveals cortical hemispheric lesions best. T1 relaxation times at 3T in the WM and GM of the hemispheres and the cerebellum, as obtained with the MP2RAGE sequence, are shown in table 2. Extending previous studies, we confirm overall longer T1-values in lesion tissue and higher standard deviations compared to the non-lesion tissue and control tissue in healthy controls. We hypothesize a biological (different degree of axonal loss and demyelination) rather than technical origin. Conclusion In this study, we applied 5 MR contrasts including two novel sequences to investigate the contrast of highest sensitivity for early MS diagnosis. In addition, we characterized for the first time the T1 relaxation time in cortical and sub-cortical regions of the hemispheres and the cerebellum. Results are in agreement with previous publications and meaningful biological interpretation of the data.
Compressed Sensing Single-Breath-Hold CMR for Fast Quantification of LV Function, Volumes, and Mass.
Resumo:
OBJECTIVES: The purpose of this study was to compare a novel compressed sensing (CS)-based single-breath-hold multislice magnetic resonance cine technique with the standard multi-breath-hold technique for the assessment of left ventricular (LV) volumes and function. BACKGROUND: Cardiac magnetic resonance is generally accepted as the gold standard for LV volume and function assessment. LV function is 1 of the most important cardiac parameters for diagnosis and the monitoring of treatment effects. Recently, CS techniques have emerged as a means to accelerate data acquisition. METHODS: The prototype CS cine sequence acquires 3 long-axis and 4 short-axis cine loops in 1 single breath-hold (temporal/spatial resolution: 30 ms/1.5 × 1.5 mm(2); acceleration factor 11.0) to measure left ventricular ejection fraction (LVEFCS) as well as LV volumes and LV mass using LV model-based 4D software. For comparison, a conventional stack of multi-breath-hold cine images was acquired (temporal/spatial resolution 40 ms/1.2 × 1.6 mm(2)). As a reference for the left ventricular stroke volume (LVSV), aortic flow was measured by phase-contrast acquisition. RESULTS: In 94% of the 33 participants (12 volunteers: mean age 33 ± 7 years; 21 patients: mean age 63 ± 13 years with different LV pathologies), the image quality of the CS acquisitions was excellent. LVEFCS and LVEFstandard were similar (48.5 ± 15.9% vs. 49.8 ± 15.8%; p = 0.11; r = 0.96; slope 0.97; p < 0.00001). Agreement of LVSVCS with aortic flow was superior to that of LVSVstandard (overestimation vs. aortic flow: 5.6 ± 6.5 ml vs. 16.2 ± 11.7 ml, respectively; p = 0.012) with less variability (r = 0.91; p < 0.00001 for the CS technique vs. r = 0.71; p < 0.01 for the standard technique). The intraobserver and interobserver agreement for all CS parameters was good (slopes 0.93 to 1.06; r = 0.90 to 0.99). CONCLUSIONS: The results demonstrated the feasibility of applying the CS strategy to evaluate LV function and volumes with high accuracy in patients. The single-breath-hold CS strategy has the potential to replace the multi-breath-hold standard cardiac magnetic resonance technique.