958 resultados para implant preload
Resumo:
Purpose: This study aimed to evaluate the influence of implants with or without threads representation on the outcome of a two-dimensional finite element (FE) analysis. Materials and Methods: Two-dimensional FE models that reproduced a frontal section of edentulous mandibular posterior bone were constructed using a standard crown/implant/screw system representation. To evaluate the effect of implant threads, two models were created: a model in which the implant threads were accurately simulated (precise model) and a model in which implants with a smooth surface (press-fit implant) were used (simplified model). An evaluation was performed on ANSYS software, in which a load of 133 N was applied at a 30-degree angulation and 2 mm off-axis from the long axis of the implant on the models, The Von Mises stresses were measured. Results: The precise model (1.45 MPa) showed higher maximum stress values than the simplified model (1.2 MPa). Whereas in the cortical bone, the stress values differed by about 36% (292.95 MPa for the precise model and 401.14 MPa for the simplified model), in trabecular bone (19.35 MPa and 20.35 MPa, respectively), the stress distribution and stress values were similar. Stress concentrations occurred around the implant neck and the implant apex. Conclusions: Considering implant and cortical bone analysis, remarkable differences in stress values were found between the models. Although the models showed different absolute stress values, the stress distribution was similar. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1040-1044
Resumo:
The misfit between prostheses and implants is a clinical reality, but the level that can be accepted without causing mechanical or biologic problem is not well defined. This study investigates the effect of different levels of unilateral angular misfit prostheses in the prosthesis/implant/retaining screw system and in the surrounding bone using finite element analysis. Four models of a two-dimensional finite element were constructed: group I (control), prosthesis that fit the implant; groups 2 to 4, prostheses with unilateral angular misfit of 50, 100, and 200 mu m, respectively. A load of 133 N was applied with a 30-degree angulation and off-axis at 2 mm from the long axis of the implant at the opposite direction of misfit on the models. Taking into account the increase of the angular misfit, the stress maps showed a gradual increase of prosthesis stress and uniform stress in the implant and trabecular bone. Concerning the displacement, an inclination of the system due to loading and misfit was observed. The decrease of the unilateral contact between prosthesis and implant leads to the displacement of the entire system, and distribution and magnitude alterations of the stress also occurred.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study evaluated possible publication bias and its related factors in implant-related research over time. Materials and Methods: Articles published in Clinical Implant Dentistry and Related Research, Clinical Oral Implants Research, Implant Dentistry, Journal of Oral Implantology, and The International Journal of Oral & Maxillofacial Implants between 2005 and 2009 were reviewed. Nonoriginal articles were excluded. For each article included, study outcome, extramural funding source, type of study, and geographic origin were recorded. Descriptive and analytic statistics (alpha = .05), including the chi-square test and logistic regression analysis, were performed where appropriate. Results: From a total of 2,085 articles, 1,503 met the inclusion criteria. of the articles analyzed, 1,226 (81.6%), 160 (10.6%), and 117 (7.8%) articles reported positive, negative, and neutral outcomes, respectively. In vitro studies, studies from Asia, and funded animal studies were more likely to report positive outcomes compared to others (P = .02, P < .0001, and P = .009, respectively). Industry-funded studies represented the lowest frequency of positive outcomes versus studies funded by other sources. Conclusions: There were a high number of implant-related studies reporting positive outcomes in the five selected journals. Some selected factors were associated with positive outcome bias. In general, funding was not associated with a positive outcome, except for animal studies. Industry-supported research did not show any association with the publication of positive outcomes. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:1024-1032
Resumo:
The aim of this study was to compare the stress distribution induced by posterior functional loads on conventional complete dentures and implant-retained overdentures with different attachment systems using a two-dimentional Finite Element Analysis (FEA-2D). Three models representative of edentulous mandible were constructed on AutoCAD software; Group A (control), a model of edentulous mandible supporting a complete denture; Group B, a model of edentulous mandible supporting an overdenture over two splinted implants connected with the bar-clip system; Group C, a model of edentuluos mandible supporting an overdenture over two unsplinted impants with the O-ring system. Evaluation was conducted on Ansys software, with a vertical force of 100 N applied on the mandibular left first molar. When the stress was evaluated in supporting tissues, groups B (51.0 MPa) and C (52.6 MPa) demonstrated higher stress values than group A (10.1 MPa). Within the limits of this study, it may be conclued that the use of an attachment system increased stress values; furthermore, the use of splinted implants associated with the bar-clip attachment system favoured a lower stress distribution over the supporting tissue than the unsplinted implants with an O-ring abutment to retain the manibular overdenture.
Resumo:
doi: 10.1111/j.1741-2358.2012.00636.x Hyperbaric oxygen therapy treatment for the fixation of implant prosthesis in oncology patients irradiated Objectives: This study aimed to present a clinical report of an irradiated oncologic patient who underwent hyperbaric oxygen therapy to be rehabilitated with implant-supported prosthesis. Materials and Methods: A 67-year-old man was admitted at Oral Oncology Center (FOA-UNESP) presenting a lesion on the mouth floor. After clinical evaluation, incisional biopsy and histopathological exam, a grade II squamous cell carcinoma was diagnosed. The patient was subjected to surgery to remove the lesion and partial glossectomy. Afterwards, the radiotherapy, in the left/right cervicofacial area of the supraclavicular fossa, was conducted. After 3 years of the surgery, the patient was submitted to hyperbaric oxygen therapy. Then, four implants were installed in patients mandible. Five months later, an upper conventional complete denture and lower full-arch implant-supported prosthesis were fabricated. Conclusion: The treatment resulted in several benefits such as improving his chewing efficiency, swallowing and speech, less denture trauma on the mucosa and improving his self-esteem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred it) supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.
Resumo:
Purpose: The aim of this study was to compare 2 different methods of assessment of implants at different inclinations (90 degrees and 65 degrees)-with a profilometer and AutoCAD software. Materials and Methods: Impressions (n = 5) of a metal matrix containing 2 implants, 1 at 90 degrees to the surface and 1 at 65 degrees to the surface, were obtained with square impression copings joined together with dental floss splinting covered with autopolymerizing acrylic resin, an open custom tray, and vinyl polysiloxane impression material. Measurement of the angles (in degrees) of the implant analogs were assessed by the same blinded operator with a profilometer and through analysis of digitized images by AutoCAD software. For each implant analog, 3 readings were performed with each method. The results were subjected to a nonparametric Kruskal-Wallis test, with P <= .05 considered significant. Results: For implants perpendicular to the horizontal surface of the specimen (90 degrees), there were no significant differences between the mean measurements obtained with the profilometer (90.04 degrees) and AutoCAD (89.95 degrees; P=.9142). In the analyses of the angled implants at 65 degrees in relation to the horizontal surface of the specimen, significant differences were observed (P=.0472) between the mean readings with the profilometer (65.73 degrees) and AutoCAD (66.25 degrees). Conclusions: The degrees of accuracy of implant angulation recording vary among the techniques available and may vary depending on the angle of the implant. Further investigation is needed to determine the best test conditions and the best measuring technique for determination of the angle of the implant in vitro.
Resumo:
The aim of this study was to evaluate the tendency of displacement of the supporting structures of the distal extension removable partial denture (DERPD) associated to the implant with different inclinations of alveolar ridge and implant localizations through a two-dimensional finite-element method. Sixteen mandibular models were fabricated, presenting horizontal, distally descending, distally ascending, or descending-ascending ridges. All models presented the left canine and were rehabilitated with conventional DERPD or implant-retained prosthesis with the ERA system. The models were obtained by the AutoCAD software and transferred to the finite-element software ANSYS 9.0 for analysis. A force of 50 N was applied on the cusp tips of the teeth, with 5 points of loading of 10 N. The results were visualized by displacement maps. For all ridge inclinations, the assembly of the DERPD with distal plate retained by an anterior implant exhibited the lowest requisition of the supporting structures. The highest tendency of displacement occurred in the model with distally ascending ridge with incisal rest. It was concluded that the association of the implant decreased the displacement of the DERPD, and the anterior positioning of the implant associated to the DERPD with the distal plate preserved the supporting structures for all ridges.
Resumo:
Purpose: This three-dimensional finite element analysis study evaluated the effect of different material combinations on stress distribution within metal-ceramic and all-ceramic single implant-supported prostheses. Materials and Methods: Three-dimensional finite element models reproducing a segment of the maxilla with a missing left first premolar were created. Five groups were established to represent different superstructure materials: GP, porcelain fused to gold alloy; GR, modified composite resin fused to gold alloy; TP, porcelain fused to titanium; TR, modified composite resin fused to titanium; and ZP, porcelain fused to zirconia. A 100-N vertical force was applied to the contact points of the crowns. All models were fixed in the superior region of bone tissue and in the mesial and distal faces of the maxilla section. Stress maps were generated by processing with finite element software. Results: Stress distribution and stress values of supporting bone were similar for the GP, GR, TP, and ZP models (1,574.3 MPa, 1,574.3 MPa, 1,574.3 MPa, and 1,574.2 MPa, respectively) and different for the TR model (1,838.3 MPa). The ZP model transferred less stress to the retention screw (785 MPa) than the other groups (939 MPa for GP, 961 MPa for GR, 1,010 MPa for TP, and 1,037 MPa for TR). Conclusion: The use of different materials to fabricate a superstructure for a single implant-supported prosthesis did not affect the stress distribution in the supporting bone. The retention screw received less stress when a combination of porcelain and zirconia was used. Int J Oral Maxillofac Implants 2011;26:1202-1209
Resumo:
Statement of problem. Implant overdenture prostheses are prone to acrylic resin fracture because of space limitations around the implant overdenture components.Purpose. The purpose of this study was to evaluate the influence of E-glass fibers and acrylic resin thickness in resisting acrylic resin fracture around a simulated overdenture abutment.Material and methods. A model was developed to simulate the clinical situation of an implant overdenture abutment with varying acrylic resin thickness (1.5 or 3.0 mm) with or without E-glass fiber reinforcement. Forty-eight specimens with an underlying simulated abutment were divided into 4 groups (n=12): 1.5 mm acrylic resin without E-glass fibers identified as thin with no E-glass fiber mesh (TN-N); 1.5 mm acrylic resin with E-glass fibers identified as thin with E-glass fiber mesh (TN-F); 3.0 mm acrylic resin without E-glass fibers identified as thick without E-glass fiber mesh (TK-N); and 3.0 mm acrylic resin with E-glass fibers identified as thick with E-glass fiber mesh (TK-F). All specimens were submitted to a 3-point bending test and fracture loads (N) were analyzed with a 2-way ANOVA and Tukey's post hoc test (alpha=.05).Results. The results revealed significant differences in fracture load among the 4 groups, with significant effects from both thickness (P<.001) and inclusion of the mesh (P<.001). Results demonstrated no interaction between mesh and thickness (P=.690). The TN-N: 39 +/- 5 N; TN-F: 50 +/- 6.9 N; TK-N: 162 +/- 13 N; and TK-F: 193 +/- 21 N groups were all statistically different (P<.001).Conclusions. The fracture load of a processed, acrylic resin implant-supported overdenture can be significantly increased by the addition of E-glass fibers even when using thin acrylic resin sections. on a relative basis, the increase in fracture load was similar when adding E-glass fibers or increasing acrylic resin thickness. (J Prosthet Dent 2011;106:373-377)
Resumo:
The purposes of this study were to photoelastically measure the biomechanical behavior of 4 implants retaining different cantilevered bar mandibular overdenture designs and to compare a fixed partial denture (FPD). A photoelastic model of a human edentulous mandible was fabricated, which contained 4 screw-type implants (3.75 x 10 mm) embedded in the parasymphyseal area. An FPD and 3 overdenture designs with the following attachments were evaluated: 3 plastic Hader clips, 1 Hader clip with 2 posterior resilient cap attachments, and 3 ball/O-ring attachments. Vertical occlusal forces of 100 N were applied between the central incisor and unilaterally to the right and left second premolars and second molars. Stresses that developed in the supporting structure were monitored photoelastically and recorded photographically. The results showed that the anterior loading, the overdenture with 3 plastic Hader clips, displayed the largest stress concentration at the medium implant. With premolar loading, the FPD and overdenture with 3 plastic Hader clips displayed the highest stresses to the ipsilateral terminal implant. With molar loading, the overdenture with 3 ball/O-ring attachments displayed the most uniform stress distribution in the posterior edentulous ridge, with less overloading in the terminal implant. It was concluded that vertical forces applied to the bar-clip overdenture and FPD created immediate stress patterns of greater magnitude and concentration on the ipsilateral implants, whereas the ball/O-ring attachments transferred minimal stress to the implants. The increased cantilever in the FPD caused the highest stresses to the terminal implant.
Resumo:
Different transfer impression techniques for implant-supported prostheses have been suggested to obtain a working cast. This article describes and illustrates clinical and laboratory pros-thodontic procedures to transfer implant positions with splinted transfer copings and without impression material to form a laboratory analog transfer template. With this technique, a preliminary cast is modified to place the analogs according to a corrected position and obtain the master cast. Although this technique does not record adjacent tissues, it is a simple procedure, less time consuming, and easily performed.