919 resultados para human periodontal ligament cells
Resumo:
Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.
Resumo:
Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.
Resumo:
Objectives: Fibroblasts play a significant role as regulators of the host response in periodontal disease, responding to bacterial stimulation by producing an array of inflammatory cytokines and chemokines. LL-37, a host defence peptide, inhibits LPS-induced cytokine signalling in macrophages, suggesting an immunomodulatory role. The objective was to investigate the interaction between LL-37 and gingival fibroblasts – both its direct regulation of fibroblast activity and its effect on fibroblast response to LPS activation. Methods: Human gingival fibroblasts (HGFs) were incubated for 24 hours in the presence of either P. gingivalis LPS (10µg/ml) or E. coli LPS (10ng/ml) along with LL-37 (0-50 µg/ml). IL-6 and IL-8 production by HGFs in the conditioned medium was determined by ELISA. Western blot was performed to determine the effect of LL-37 on LPS -induced IκBα degradation in HGFs following LPS stimulation over 2 hours. DNA microarray analysis was performed on cell populations incubated for 6 hr in the presence or absence of the peptide. Confirmation of LL-37 effects on specific gene expression was obtained by QPCR. Results: At low concentrations (≤ 5 µg/ml) LL-37 significantly inhibited LPS-induced cytokine production by HGFs. At higher concentrations LL-37 induced IL-8 production independent of LPS. Addition of LL-37 blocked LPS-induced IκBα degradation in HGFs. Microarray analysis revealed that LL-37 (50µg/ml) upregulated a significant number of cytokines and chemokines by > 5 fold. Upregulation of five of these, CXCL1, CXCL2, CXCL3, IL-24 and IL-8 was confirmed by Q-PCR. Conclusion: The host defence peptide LL-37, the only known human cathelicidin, appears to have pleiotrophic effects in innate immunity. At least some of these are mediated through cytokine and chemokine signalling networks. The ability of LL-37 to reduce bacterial LPS-induced cytokine production in gingival fibroblasts, at low concentrations, suggests a potential therapeutic role in the management of periodontal disease.
Resumo:
PURPOSE. Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal M¨uller cells. We now explore pathogenic effects of modified LDL on M¨uller cells, and the efficacy of berberine in mitigating this cytotoxicity. METHODS. Confluent human M¨uller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/ without pretreatment with berberine (5 lM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 lM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-a), and glial cell activation (glial fibrillary acidic protein). RESULTS. Native-LDL had no effect on cultured human M¨uller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). CONCLUSIONS. Berberine inhibits modified LDL-induced M¨uller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Resumo:
Microvesicles are released from cell surfaces constitutively during early apoptosis or upon activation with various stimuli including sublytic membrane attack complex (MAC). This study shows that an alternating current, pulsed, extremely low-frequency electromagnetic field (0.3 μT at 10 Hz, 6 V AC) induced transient plasma membrane damage that allowed calcium influx. This in turn caused a release of stimulated microvesicles (sMV). When extracellular calcium was chelated with EGTA, sMV biogenesis initiated by ELFMF was markedly reduced and the reduction was less than when the stimulation was the deposition of sublytic MAC. This suggested that pulsed ELFMF resulted in transcellular membrane pores causing organelles to leak additional calcium into the cytoplasm (which EGTA would not chelate) which itself can lead to sMV release.
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.
Resumo:
Some cross-sectional and prospective studies have demonstrated a positive correlation between habitual tea consumption and bone mineral density in post-menopausal women. Rooibos tea contains no caffeine and is a rich source of flavonoids such as rutin, orientin, hyperoside and luteolin. These flavonoids have similar structures to estradiol, and therefore may act as estrogen mimics to promote favourable outcomes in bone. The overall objective of this research was to identify flavonoids that could enhance mineral content in human osteoblast Saos2 cells. Mineral was quantified by alizarin red staining and characterized by quantifying alkaline phosphatase (ALP) activity, cell mitochondria activity and toxicity, in addition to changes in regulatory markers of osteoblastic activity. Rutin (≥50μM), hyperoside (≥5.0μM), orientin (0.1μM-1.0μM, 15μM-100μM) and luteolin (5.0μM) enhanced mineral content. This was in part due to elevated ALP and mitochondrial activity, and lower toxicity, pro-inflammatory cytokines, and Wnt inhibitors.
Resumo:
Cancer cells display enhanced growth rates and a resistance to apoptosis. Lung cancer accounts for the most cancer related deaths and non-small cell lung cancer (NSCLC) represents an aggressive form of lung cancer, accounting for almost 80% of all lung cancer cases. The phytochemical rosemary extract (RE) has been reported to have anticancer effects in vitro and in vivo however, limited evidence exists regarding the effects of RE and its polyphenolic constituents carnosic acid (CA) and rosmarinic acid (RA) in lung cancer. The present study shows RE, CA and RA inhibit lung cancer cell proliferation and survival in various NSCLC cell lines and that CA and RA interact synergistically to inhibit cell proliferation. Moreover RE, CA and RA are capable of altering activation and/or expression of Akt, ERK and AMPK, signaling molecules which regulate cell proliferation and survival. RE shows potential as an anticancer agent and should be further investigated.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [H-3]oestradiol from recombinant human oestrogen receptors ER alpha and ER beta, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 x 10(-5) to 5 x 10(-4) M, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10(-8) M 17 beta-oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10(-8) M 17 beta-oestradiol, given a longer time period of 35 days the extent of proliferation with 10(-4) M benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10(-8) M 17 beta-oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [H-3]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphadon of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.
Resumo:
Since the alkyl esters of p-hydroxybenzoic acid (parabens) can be measured intact in the human breast and possess oestrogenic properties, it has been suggested that they could contribute to an aberrant burden of oestrogen signalling in the human breast and so play a role in the rising incidence of breast cancer. However, although parabens have been shown to regulate a few single genes (reporter genes, pS2, progesterone receptor) in a manner similar to that of 17 beta-oestradiol, the question remains as to the full extent of the similarity in the overall gene profile induced in response to parabens compared with 17 beta-oestradiol. The GE-Amersham CodeLink 20 K human expression microarray system was used to profile the expression of 19881 genes in MCF7 human breast cancer cells following a 7-day exposure to 5 x 10(-4) m methylparaben, 10(-5) m n-butylparaben and 10(-8) m 17 beta-oestradiol. At these concentrations, the parabens gave growth responses in MCF7 cells of similar magnitude to 17 beta-oestradiol. The study identified genes which are upregulated or downregulated to a similar extent by methylparaben, n-butylparaben and 17 beta-oestradiol. However, the majority of genes were not regulated in the same way by all three treatments. Some genes responded differently to parabens from 17 beta-oestradiol, and furthermore, differences in expression of some genes could be detected even between the two individual parabens. Therefore, although parabens possess oestrogenic properties, their mimicry in terms of global gene expression patterns is not perfect and differences in gene expression profiles could result in consequences to the cells that are not identical to those following exposure to 17 beta-oestradiol. Copyright (c) 2006 John Wiley & Sons, Ltd.