985 resultados para holographic grating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single long-period fibre grating was written in a biconical fibre taper made from standard communications step-index optical fibre, resulting in an interferometric fibre sensor device that provided a resolution of 1×10–4 for refractive indices in the range of 1.30 to 1.34, suggesting that these devices may be suitable for use with aqueous solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here a new class of multi-channel Fiber Bragg grating (FBG), which provides the characteristics of channelized dispersion but does so with only a single reflection band. An FBG of this type can provide pure phase control of the spectral waveform of optical pulses without introducing any deleterious insertion-loss-variation. We anticipate that this new class of FBG will find some applications in wavelength-division- multiplexing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the fiber geometry on the point-by-point inscription of fiber Bragg gratings using a femtosecond laser is highlighted. Fiber Bragg gratings with high spectral quality and strong first-order Bragg resonances within the C-band are achieved by optimizing the inscription process. Large birefringence (1.2×10-4) and high degree of polarizationdependent index modulation are observed in these gratings. Potential applications of these gratings in resonators are further illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)x125(d) x500(l) µm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10- 6/pm was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel all-fibre cavity ring down spectroscopy technique is proposed where a tilt fibre Bragg grating (TFBG) or long-period grating (LPG) in the cavity provides sensitivity to surrounding medium. Such configuration with an LPG as the representative was theoretically analyzed. Two spectral bands were identified employable for sensing of surrounding refractive index for a weak LPG while only one band existed for a strong LPG. A TFBG, with enhanced sensitivity compared to usual LPGs, was used in a ring down cavity of 1 m constructed with 2 fibre Bragg gratings as the reflectors and the decay time changed from 220 to 450 ns when the TFBG was immersed into water from air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate apodisation profiles of fibre Bragg gratings to determine key factors in filter design, using a novel apodisation technique. This highlights some practical fabrication limitations and provides important information concerning trade-offs between sidelobe suppression and bandwidth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The author’s hypothesis that ‘it should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)’ is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogator’s peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis address the creation of fibre Bragg grating based sensors and the fabrication systems which are used to manufacture them. The information is presented primarily with experimental evidence, backed up with the current theoretical concepts. The issues involved in fabricating high quality fibre Bragg gratings are systematically investigated. Sources of errors in the manufacturing processes are detected, analysed and reduced to allow higher quality gratings to be fabricated. The use of chirped Moiré gratings as distributed sensors is explored, the spatial resolution is increased beyond that of any previous work and the use of the gratings as distributed load sensors is also presented. Chirped fibre Bragg gratings are shown to be capable of operating as in-situ wear sensors, capable of accurately measuring the wear or erosion of the surface of a material. Two methods of measuring the wear are compared, giving a comparison between an expensive high resolution method and a cheap lower resolution method. The wear sensor is also shown to be capable of measuring the physical size and location of damage induced on the surface of a material. An array method is demonstrated to provide a high survivability such that the array may be damaged yet operate with minimal degradation in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long period grating was photoinscribed step-by-step in microstructured poly(methyl methacrylate) fiber for the first time using a continuous wave HeCd laser at 325 nm, irradiating the fiber with a power of 1 mW. The grating had a length of 2 cm and a period of 1 mm. A series of cladding mode coupling resonances were observed throughout the spectral region studied of 600 to 1100 nm. The resonance wavelengths were shown to be sensitive to the diffusion of water into the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an optical biosensor based on a dual-peak long-period fiber grating, we have demonstrated the detection of interactions between biomolecules in real time. Silanization of the grating surface was successfully realized for the covalent immobilization of probe DNA, which was subsequently hybridized with the complementary target DNA sequence. It is interesting to note that the DNA biosensor was reusable after being stripped off the hybridized target DNA from the grating surface, demonstrating a function of multiple usability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a Bragg grating written in an eccentric-cored polymer optical fibre for measurement of strain, bend and temperature. The strain sensitivity achieves 1.13 pm µe -1. The temperature response shows a negative sign with the thermal sensitivity of -50.1 pm ?C-1. For bend sensing, this device exhibits a strong fibre orientational dependence, wide bend curvature range of ±22.7 m-1 and a high bend sensitivity of 63.3 pm/m-1.