987 resultados para high-resolution electrocardiography
Resumo:
A method of capillary HPLC-high-resolution MS was developed for the trace analysis of ATP, GTP, dATP and dGTP Dimethylhexylamine (DMHA) was used as ion-pairing agent for the HPLC retention and separation of the nucleotides and positive ion electrospray time-of-flight MS was used for the detection. The application of capillary HPLC allowed minimal usage of DMHA while providing excellent peak retention and resolution, which significantly reduced the ion suppression in electrospray ionization-MS analysis and thus increased the sensitivity. Adduct ions of nucleotides and DMHA were used as quantitative ions in order to achieve the best sensitivity. DMHA concentration at 5 mM in the aqueous mobile phase at pH 7 was found to be the optimal conditions for the C Is capillary column. The method was applied to determine ATP level in cultured C6 glioma cells that were treated with toxic concentrations of Zn. The results showed that the cellular ATP level decreased from 2.7 pmol/cell (<10% cell death) in average control cell samples to 0.36 pmol/cell as the concentration of Zn increased to 120 mg/l (>35% cell death) in culture medium.
Resumo:
The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.
Resumo:
Single chain single crystals (SCSC) of gutta percha (GP) were prepared by a dilute-solution spraying method. Electron diffraction (ED) patterns revealed that the single chain single crystal was of a new crystalline modification, the delta form. The images of SCSC of GP obtained with a high resolution electron microscope (HREM) showed a two dimensional periodic structure. Most of the images consisted of lattice fringes derived from the (001) zone. This is the first time that the single chain single crystal images of GP have been observed at a molecular level. Micrographs were image processed using optical filtering methods to improve the signal-to-noise ratio, and were compared with computer-generated simulations of the images. From the viewpoint of the defects seen in high resolution images, the crystal formation and melting processes are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The microstructure of two bicomponent and one tricomponent segmented copolymers, based on polydimethylsiloxane, poly(p-hydroxystyrene) or/and polysulfone, were investigated using an extended Goldman-Shen pulse sequence, proton spin-spin relaxation measurements, and C-13 and Si-29 NMR spectra. The results indicate that there exist four phases with different sizes, components and morphological structure in the segmented copolymers studied in this work, i. e., a rigid-chain phase of very slow motion, a rigid-chain-rich phase of slow motion, a flexible-chain-rich phase of fast motion and a flexible-chain phase of faster motion. The sizes of different domains, calculated from the spin diffusion rates, are about 50-100 angstrom for the flexible-chain-rich phase of fast motion and 200-300 angstrom for the flexible-chain phase of faster motion. The relative quantities of polydimethylsiloxane in the flexible-chain phase of fast motion are slightly different in different kinds of segmented copolymers.
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.
Resumo:
Variations in the structure and acidity properties of HZSM-5 zeolites with reduction in crystal sizes down to nanoscale (less than 100 nm) have been investigated by XRD, TEM and solid-state NMR with a system capable of in situ sample pretreatment. As evidenced by a combination of Al-27 MAS NMR, Si-29 MAS, CP/MAS NMR and H-1 MAS NMR techniques, the downsize of the zeolite crystal leads to an obvious line broadening of the Al-27, Si-29 MAS NMR spectrum, an increasing of the silanol concentration on the external surface, and a pronounced alteration of the acidity distribution between the external and internal surfaces of the zeolite. In a HZSM-5 zeolite with an average size at about 70 nm, the nonacidic hydroxyl groups (silanols) are about 14% with respect to the total amount of Si, while only 4% of such hydroxyl groups exist in the same kind of zeolite at 1000 nm crystal size. The result of H-1 MAS NMR obtained using Fluorinert(R) FC-43 (perfluorotributyl amine) as a probe molecule demonstrates that most of the silanols are located on the external surface of the zeolite. Moreover, the concentration of Bronsted acid sites on the external surface of the nano-structured zeolite appears to be distinctly higher than that of the microsized zeolite.
Resumo:
The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.
Resumo:
In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H-2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions. (c) 2005 American Institute of Physics.
Resumo:
Very Long Baseline Interferometry (VLBI) polarisation observations of the relativistic jets from Active Galactic Nuclei (AGN) allow the magnetic field environment around the jet to be probed. In particular, multi-wavelength observations of AGN jets allow the creation of Faraday rotation measure maps which can be used to gain an insight into the magnetic field component of the jet along the line of sight. Recent polarisation and Faraday rotation measure maps of many AGN show possible evidence for the presence of helical magnetic fields. The detection of such evidence is highly dependent both on the resolution of the images and the quality of the error analysis and statistics used in the detection. This thesis focuses on the development of new methods for high resolution radio astronomy imaging in both of these areas. An implementation of the Maximum Entropy Method (MEM) suitable for multi-wavelength VLBI polarisation observations is presented and the advantage in resolution it possesses over the CLEAN algorithm is discussed and demonstrated using Monte Carlo simulations. This new polarisation MEM code has been applied to multi-wavelength imaging of the Active Galactic Nuclei 0716+714, Mrk 501 and 1633+382, in each case providing improved polarisation imaging compared to the case of deconvolution using the standard CLEAN algorithm. The first MEM-based fractional polarisation and Faraday-rotation VLBI images are presented, using these sources as examples. Recent detections of gradients in Faraday rotation measure are presented, including an observation of a reversal in the direction of a gradient further along a jet. Simulated observations confirming the observability of such a phenomenon are conducted, and possible explanations for a reversal in the direction of the Faraday rotation measure gradient are discussed. These results were originally published in Mahmud et al. (2013). Finally, a new error model for the CLEAN algorithm is developed which takes into account correlation between neighbouring pixels. Comparison of error maps calculated using this new model and Monte Carlo maps show striking similarities when the sources considered are well resolved, indicating that the method is correctly reproducing at least some component of the overall uncertainty in the images. The calculation of many useful quantities using this model is demonstrated and the advantages it poses over traditional single pixel calculations is illustrated. The limitations of the model as revealed by Monte Carlo simulations are also discussed; unfortunately, the error model does not work well when applied to compact regions of emission.
Resumo:
info:eu-repo/semantics/nonPublished