861 resultados para high performance concrete.
Resumo:
In this paper we will describe new bimesogenic nematic liquid crystals that have high flexoelectro-optic coefficients (e/K),of the order of 1.5 CN 1 m-1, high switching angles, up to 100° and fast response times, of the order of 100μs or less. We will describe devices constructed, using the ULH texture that may be switched to the optimum angle of 45° for a birefringence based device with the fields of 4Vμm-1 over a wide temperature range. Such devices use an "in plane" optical switching mode, have gray scale capability and a wide viewing angle. We will describe devices using the USH or Grandjean texture that have an optically isotropic "field off" black state, uses "in plane" switching E fields, to give an induced birefringence phase device, with switching times of the order of 20μs. We will briefly describe new highly reflective Blue Phase devices stable over a 50V temperature range in which an electric field is used to switch the reflection from red to green, for example. Full RGB reflections may be obtained with switching times of a few milliseconds. Finally we will briefly mention potential applications including high efficiency RGB liquid crystal laser sources. © 2006 SID.
Resumo:
Quality control is considered from the simulator's perspective through comparative simulation of an ultra energy-efficient building with EE4-DOE2.1E and EnergyPlus. The University of Calgary's Leadership in Energy and Environmental Design Platinum Child Development Centre, with a 66% certified energy cost reduction rating, was the case study building. A Natural Resources Canada incentive program required use of EE4 interface with DOE2.1E simulation engine for energy modelling. As DOE2.1E lacks specific features to simulate advanced systems such as radiant cooling in the CDC, an EnergyPlus model was developed to further evaluate these features. The EE4-DOE2.1E model was used for quality control during development of the base EnergyPlus model and simulation results were compared. Advanced energy systems then added to the EnergyPlus model generated small difference in estimated total annual energy use. The comparative simulation process helped identify the main input errors in the draft EnergyPlus model. The comparative use of less complex simulation programs is recommended for quality control when producing more complex models. © 2009 International Building Performance Simulation Association (IBPSA).
Resumo:
Rogowski transducers have become an increasingly popular method of measuring current within prototyping applications and power electronics equipment due to their significant advantages compared to an equivalent current transformer. This paper presents a simple and practical construction technique of high-performance, low-cost Rogowski transducers and accompanying circuitry. Experimental tests were carried out to show the validity of the proposed construction technique. © 2005 IEEE.
Resumo:
Façade design is a complex and multi-disciplinary process. One major barrier to devising optimal façade solutions is the lack of a systematic way of evaluating the true social, economic and environmental impacts of a design. Another barrier is the lack of automated design aids to assist decision-making. In this paper, we present our on-going study in developing a whole-life value based multi-objective optimisation model for high-performance façades. The principal outcome of this paper is a multi-objective optimisation model for early-stage façade design. The optimisation technique coupled with other 3rd party software and/or specially developed scripts provide façade designers with an integrated design tool of wide applicability.
Resumo:
Chemical looping combustion (CLC) is a novel combustion technology that involves cyclic reduction and oxidation of oxygen storage materials to provide oxygen for the combustion of fuels to CO2 and H2O, whilst giving a pure stream of CO2 suitable for sequestration or utilisation. Here, we report a method for preparing of oxygen storage materials from layered double hydroxides (LDHs) precursors and demonstrate their applications in the CLC process. The LDHs precursor enables homogeneous mixing of elements at the molecular level, giving a high degree of dispersion and high-loading of active metal oxide in the support after calcination. Using a Cu-Al LDH precursor as a prototype, we demonstrate that rational design of oxygen storage materials by material chemistry significantly improved the reactivity and stability in the high temperature redox cycles. We discovered that the presence of sodium-containing species were effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAlO 2) and stabilising the copper phase in an amorphous support over multiple redox cycles. A representative nanostructured Cu-based oxygen storage material derived from the LDH precursor showed stable gaseous O2 release capacity (∼5 wt%), stable oxygen storage capacity (∼12 wt%), and stable reaction rates during reversible phase changes between CuO-Cu 2O-Cu at high temperatures (800-1000 °C). We anticipate that the strategy can be extended to manufacture a variety of metal oxide composites for applications in novel high temperature looping cycles for clean energy production and CO2 capture. © The Royal Society of Chemistry 2013.