926 resultados para hematology
Resumo:
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Resumo:
Multi-drug resistance (MDR) may compromise the successful management of haematological malignancies, impairing the effectiveness of chemotherapy. The P-glycoprotein (P-gp) drug efflux pump, encoded by the gene ABCB1 (MDR1), is the most widely studied component in MDR. A single nucleotide polymorphism (SNP) has been identified within ABCB1, rs1045642 (C3435T), which may alter P-gp substrate specificity and have an impact on the effectiveness of treatment, and hence overall survival (OS). We estimated the frequency of this SNP in the Northern Irish population and investigated its impact on the OS of patients with plasma cell myeloma (PCM). There was no significant difference in the frequency of rs1045642 between the PCM cohort and an age- and gender-matched control population. Findings within the PCM cohort suggest that rs1045642 genotype influences OS (p = 2 x 10(-2)). If confirmed in larger studies, these results suggest that genotyping rs1045642 may be a useful predictor of outcome in PCM and could indicate modified treatment modalities in certain individuals.
Resumo:
JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAY2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development.
Resumo:
Hemopoietic progenitor cells express clustered homeobox (Hox) genes in a pattern characteristic of their lineage and stage of differentiation. In general, HOX expression tends to be higher in more primitive and lower in lineage-committed cells. These trends have led to the hypothesis that self-renewal of hemopoietic stem/progenitor cells is HOX-dependent and that dysregulated HOX expression underlies maintenance of the leukemia-initiating cell. Gene expression profile studies support this hypothesis and specifically highlight the importance of the HOXA cluster in hemopoiesis and leukemogenesis. Within this cluster HOXA6 and HOXA9 are highly expressed in patients with acute myeloid leukemia and form part of the "Hox code" identified in murine models of this disease. We have examined endogenous expression of Hoxa6 and Hoxa9 in purified primary progenitors as well as four growth factor-dependent cell lines FDCP-Mix, EML, 32Dcl3, and Ba/F3, representative of early multipotential and later committed precursor cells respectively. Hoxa6 was consistently higher expressed than Hoxa9, preferentially expressed in primitive cells and was both growth-factor and cell-cycle regulated. Enforced overexpression of HOXA6 or HOXA9 in FDCP-Mix resulted in increased proliferation and colony formation but had negligible effect on differentiation. In both FDCP-Mix and the more committed Ba/F3 precursor cells overexpression of HOXA6 potentiated factor-independent proliferation. These findings demonstrate that Hoxa6 is directly involved in fundamental processes of hemopoietic progenitor cell development.
Resumo:
An increasing understanding of the process of erythropoiesis raises some interesting questions about the pathophysiology, diagnosis and treatment of anemia and erythrocytosis. The mechanisms underlying the development of many of the erythrocytoses, previously characterised as idiopathic, have been elucidated leading to an increased understanding of oxygen homeostasis. Characterisation of anemia and erythrocytosis in relation to serum erythropoietin levels can be a useful addition to clinical diagnostic criteria and provide a rationale for treatment with erythropoiesis stimulating agents (ESAs). Recombinant human erythropoietin as well as other ESAs are now widely used to treat anemias associated with a range of conditions, including chronic kidney disease, chronic inflammatory disorders and cancer. There is also heightened awareness of the potential abuse of ESAs to boost athletic performance in competitive sport. The discovery of erythropoietin receptors outside of the erythropoietic compartment may herald future applications for ESAs in the management of neurological and cardiac diseases. The current controversy concerning optimal hemoglobin levels in chronic kidney disease patients treated with ESAs and the potential negative clinical outcomes of ESA treatment in cancer reinforces the need for cautious evaluation of the pleiotropic effects of ESAs in non-erythroid tissues.
Resumo:
The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.
Resumo:
Most cytotoxic drugs kill cells by instigating the process of apoptosis and it has been suggested that apoptotic markers may provide an indication of tumour chemosensitivity. The aim of this study was to determine if such a relationship exists in acute myeloid leukaemia (AML). The levels of spontaneous apoptosis, bcl-2 and bax were evaluated in 56 newly diagnosed AML patients to determine if they correlated with a response to cytotoxic therapy. Spontaneous apoptosis was lower, but bcl-2, bax and the bcl-2/bax ratio were higher in AML compared with normal individuals. AML patients with high bax expression at diagnosis had significantly better prognosis for disease-free survival, event-free survival and overall survival (P = 0.016). In the standard risk group, high bax expression was in keeping with significantly improved survival. Multivariate analysis revealed bax to be an independent predictor of survival. There was a significant reduction in bcl-2 and bax expression when AML patients entered complete remission and also in relapsed AML patients who entered a second remission. This study suggests that bax is a useful prognostic indicator in AML and may assist with therapeutic decision-making for patients in the standard risk category.