909 resultados para greenhouse gas emission
Resumo:
Reducing carbon conversion of ruminally degraded feed into methane increases feed efficiency and reduces emission of this potent greenhouse gas into the environment. Accurate, yet simple, predictions of methane production of ruminants on any feeding regime are important in the nutrition of ruminants, and in modeling methane produced by them. The current work investigated feed intake, digestibility and methane production by open-circuit respiration measurements in sheep fed 15 untreated, sodium hydroxide (NaOH) treated and anhydrous ammonia (NH3) treated wheat, barley and oat straws. In vitro fermentation characteristics of straws were obtained from incubations using the Hohenheim gas production system that measured gas production, true substrate degradability, short-chain fatty acid production and efficiency of microbial production from the ratio of truly degraded substrate to gas volume. In the 15 straws, organic matter (OM) intake and in vivo OM digestibility ranged from 563 to 1201 g and from 0.464 to 0.643, respectively. Total daily methane production ranged from 13.0 to 34.4 l, whereas methane produced/kg OM matter apparently digested in vivo varied from 35.0 to 61.8 l. The OM intake was positively related to total methane production (R2 = 0.81, P<0.0001), and in vivo OM digestibility was also positively associated with methane production (R2 = 0.67, P<0.001), but negatively associated with methane production/kg digestible OM intake (R2 = 0.61, P<0.001). In the in vitro incubations of the 15 straws, the ratio of acetate to propionate ranged from 2.3 to 2.8 (P<0.05) and efficiencies of microbial production ranged from 0.21 to 0.37 (P<0.05) at half asymptotic gas production. Total daily methane production, calculated from in vitro fermentation characteristics (i.e., true degradability, SCFA ratio and efficiency of microbial production) and OM intake, compared well with methane measured in the open-circuit respiration chamber (y = 2.5 + 0.86x, R2 = 0.89, P<0.0001, Sy.x = 2.3). Methane production from forage fed ruminants can be predicted accurately by simple in vitro incubations combining true substrate degradability and gas volume measurements, if feed intake is known.
Resumo:
Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. The pool of available carbon that is added to the soil from livestock excreta also provides substrate for the production of carbon dioxide (CO2) and methane (CH4) by soil microorganisms. A study into the production and emission of CO2, CH4 and N2O from cattle urine amended pasture was carried out on the Somerset Levels and Moors, UK over a three-month period. Urine-amended plots (50 g N m−2) were compared to control plots to which only water (12 mg N m−2) was applied. CO2 emission peaked at 5200 mg CO2 m−2 d−1 directly after application. CH4 flux decreased to −2000 μg CH4 m−2 d−1 two days after application; however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 88 mg N2O m−2 d−1 12 days after application. Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500 ppm 12 days after and 1200 ppm 56 days after application. Subsurface NO3− concentration peaked at approximately 300 mg N kg dry soil−1 12 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that this production is strongly related to rainfall events and water-table movement. N2O production at depth continued long after emissions were detected at the surface. Further understanding of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.
Resumo:
Agriculture and food production are responsible for a substantial proportion of greenhouse gas emissions. An emission based food tax has been proposed as one option to reduce food related emissions. This study introduces a method to measure the impacts of emission based food taxes at a household level which involves the use of data augmentation to account for the fact that the data record purchases and not consumption. The method is applied to determine the distributional and nutritional impacts of an emission based food tax across socio-economic classes in the UK. We find that a tax of £2.841/tCO2e on all foods would reduce food related emissions by 6.3% and a tax on foods with above average levels of emissions would reduce emissions by 4.3%. The tax burden falls disproportionately on households in the lowest socio-economic class because they tend to spend a larger proportion of their food expenditure on emission intensive foods and because they buy cheaper products and therefore experience relatively larger price increases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sugarcane is an important crop for the Brazilian economy and roughly 50% of its production is used to produce ethanol. However, the common practice of pre-harvest burning of sugarcane straw emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the practice of pre-harvest sugarcane burning in the near future, there is still significant environmental damage. Thus, the generation of reliable inventories of emissions due to this activity is crucial in order to assess their environmental impact. Nevertheless, the official Brazilian emissions inventory does not presently include the contribution from pre-harvest sugarcane burning. In this context, this work aims to determine sugarcane straw burning emission factors for some trace gases and particulate material smaller than 2.5μm in the laboratory. Excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons), and PM2.5 were measured, allowing the estimation of their respective emission factors. Average estimated values for emission factors (g kg-1 of burned dry biomass) were 1,303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.6 ± 1.6 for PM2.5. These emission factors can be used to generate more realistic emission inventories and therefore improve the results of air quality models. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The rate of destruction of tropical forests continues to accelerate at an alarming rate contributing to an important fraction of overall greenhouse gas emissions. In recent years, much hope has been vested in the emerging REDD+ framework under the UN Framework Convention on Climate Change (UNFCCC), which aims at creating an international incentive system to reduce emissions from deforestation and forest degradation. This paper argues that in the absence of an international consensus on the design of results-based payments, “bottom-up” initiatives should take the lead and explore new avenues. It suggests that a call for tender for REDD+ credits might both assist in leveraging private investments and spending scarce public funds in a cost-efficient manner. The paper discusses the pros and cons of results-based approaches, provides an overview of the goals and principles that govern public procurement and discusses their relevance for the purchase of REDD+ credits, in particular within the ambit of the European Union.
Resumo:
Nitrous oxide (N2O) is the main greenhouse gas (GHG) produced by agricultural soils due to microbial processes. The application of N fertilizers is associated with an increase of N2O losses. However, it is possible to mitigate these emissions by the introduction of adequate management practices (Snyder et al., 2009). Soil conservation practices (i.e.no tillage, NT) have recently become widespread because they promote several positive effects (increases in soil organic carbonand soil fertility, reduction of soil erosion, etc). In terms of GHG emissions, there is no consensus in the literature on the effects of tillage on N2O. Several studies found that NT can produce greater (Baggs et al., 2003), lower (Malhi et al., 2006) or similar (Grandey et al., 2006) N2O emissions compared to traditional tillage (TT). This large uncertainty is associated with the duration of tillage practices and climatic variability. Liming is widely use to solve problems of soil acidity (Al toxicity, yield penalties, etc). Several studies show a decrease in N2O emissions with liming (Barton et al., 2013) whereas no significant effects or increases were observed in others (Galbally et al., 2010). The aim of this work was to evaluate the effects of tillage (NT vs TT) and liming application or not of Ca-amendment) on N2O emissions from an acid soil during a rainfed crop.
Resumo:
Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the “with measures” scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. Implications: A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.
Resumo:
Various emission reduction strategies are proposed to manage climate change in the U.S. This applied capstone evaluates the most likely policy options considering impacts and benefits to the natural gas transmission sector (NGT). It examines a case-study including a comparison of policy options to recommend the most beneficial program to the NGT sector. Two conclusions of major importance are: a federally preempted cap-and-trade program would be the most cost-effective for the NGT sector and the NGT sector should not be the point of regulation of any climate policy. Recommendations, strategies, and costs for implementation of a compliance plan for a federally preempted cap-and-trade program were developed as a tool for NGT companies as part of this applied capstone project.
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Resumo:
Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH₄) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH₄ emissions to be 196 ± 18 Gg yr⁻¹ for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr⁻¹ as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH₄ source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH₄ emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH₄ in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr⁻¹ reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr⁻¹ implied by the EDGARv4.2 inventory for this sector. Increased CH₄ emissions (up to 30 % compared to the prior) were deduced for the north-eastern parts of Switzerland. This feature was common to most sensitivity inversions, which is a strong indicator that it is a real feature and not an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements.
Resumo:
Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.
Resumo:
Air transport has become a vital component of the global economy. However, greenhouse-gas emissions from this sector have a significant impact on global climate, being responsible for over 3.5% of all anthropogenic radiative forcing. Also, the accrued visibility of aircraft emissions greatly affects the public image of the industry. In this context, incentive-based regulations, in the form of price or quantity controls, can be envisaged as alternatives to mitigate these emissions. The use of environmental charges in air transport, and the inclusion of the sector in the European Union Emissions Trading Scheme (EU ETS), are considered under a range of scenarios. The impacts of these measures on demand are estimated, and results suggest that they are likely to be minimal-mainly due to the high willingness to pay for air transport. In particular, in the EU ETS scenario currently favoured by the EU, demand reductions are less than 2%. This may not be true in the longer run, for short trips, or if future caps become more stringent. Furthermore, given current estimates of the social Cost Of CO2 as well as typical EU ETS prices, supply-side abatement would be too costly to be encouraged by these policies in the short term. The magnitude of aviation CO2 emissions in the EU is estimated, both in physical and monetary terms; the results are consistent with Eurocontrol estimates and, for the EU-25, the total social cost of these emissions represents only 0.03% of the region`s GDP. It is concluded that the use of multisector policies, such as the EU ETS, is unsuitable for curbing emissions from air transport, and that stringent emission charges or an isolated ETS would be better instruments. However, the inclusion of aviation in the EU ETS has advantages under target-oriented post-2012 scenarios, such as policy-costs dilution, certainty in reductions, and flexibility in abatement allocation. This solution is also attractive to airlines, as it would improve their public image but require virtually no reduction of their own emissions, as they would be fully capable of passing on policy costs to their customers.
Resumo:
Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.
Resumo:
A presente dissertação tem como principal objectivo estimar as emissões de carbono resultantes das actividades da Monteiro, Ribas- Embalagens Flexíveis, S.A. A realização do inventário de gases de efeito estufa permite que a Monteiro, Ribas- Embalagens Flexíveis, S.A, identifique quais as suas fontes emissoras e quantifique as emissões de gases de efeito estufa, permitindo criar estratégias de redução das mesmas. A elaboração do inventário foi fundamentada nas directrizes do Greenhouse Gas Protocol, obedecendo aos princípios de relevância, integrabilidade, consistência, transparência e exactidão. A metodologia adoptada utiliza factores de emissão documentados para efectuar o cálculo das emissões de gases de efeito de estufa (GEE). Estes factores são rácios que relacionam as emissões de GEE com dados de actividade específicos para cada fonte de emissão. Como emissões directas (âmbito 1), foram quantificadas as emissões provenientes do uso de gás natural nas caldeiras, consumo de vapor e de água quente, e as emissões do veículo comercial da empresa. Como emissões indirectas de âmbito 2, incluem-se as resultantes da electricidade consumida. As emissões indirectas estimadas de âmbito 3 referem-se, no caso em estudo, ao transporte de resíduos, ao deslocamento de funcionários para a empresa e às viagens de negócio. Face ao tipo de emissões identificadas, criou-se uma ferramenta de cálculo que contém todos os valores de factores de emissão que podem ser utilizados em função das características específicas dos dados de actividade relativos às várias fontes emissoras da Empresa. Esta ferramenta permitirá, no futuro, aperfeiçoar o cálculo das emissões, a partir de uma melhor sistematização da informação disponível. Com este trabalho também foi possível identificar a necessidade de recolher e organizar alguma informação complementar à já existente. O ano base considerado foi 2011. Os resultados obtidos mostram que, neste ano, as actividades da Monteiro, Ribas- Embalagens Flexíveis, S.A serão responsáveis pela emissão de 2968,6 toneladas de CO2e (dióxido de carbono equivalente). De acordo com a Decisão 2007/589/CE da Comissão de 18 de Julho de 2007 conclui-se que a Monteiro, Ribas Embalagens e Flexíveis S.A. se enquadra na categoria de instalações com baixo níveis de emissões pois as suas emissões médias anuais são inferiores a 25000 toneladas de CO2e. Conclui-se que a percentagem maior das emissões estimadas (50,7 %) é proveniente do consumo de electricidade (emissões indirectas, âmbito 2), seguida pelo consumo de gás natural (emissões directas) que representa 39,4% das emissões. Relacionando os resultados obtidos com a produção total da Monteiro, Ribas- Embalagens Flexíveis, S.A, em 2011, obtém-se o valor de 0,65 kg de CO2e por cada quilograma de produto final. Algumas das fontes emissoras identificadas não foram incorporadas no inventário da empresa, nomeadamente o transporte das matérias-primas e dos produtos. Isto deve-se ao facto de não ter sido possível compilar a informação necessária, em tempo útil. Apesar de se tratar de emissões indirectas de âmbito 3, consideradas opcionais, recomenda-se que num próximo trabalho deste tipo, essas emissões possam vir a ser quantificadas. As principais incertezas associadas às estimativas de emissão dizem respeito aos dados de actividade uma vez que foi a primeira vez que a empresa realizou um inventário de gases de efeito de estufa. Há informações mais específicas sobre os dados de actividade que a empresa dispõe e que poderá, de futuro, sistematizar de uma forma mais adequada para a sua utilização com este fim.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Gestão e Sistemas Ambientais