904 resultados para green fluorescent protein (GFP)
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and electroporation using microneedle electrodes and a commercially available voltage supply, we compared the performance of flat and microneedle electrodes by measuring GFP expression at various timepoints after electroporation. Our main finding, supported by both experimental and simulated data, is that needles significantly enhanced electroporation of testis.
Resumo:
An alternative method for monitoring protein-protein interactions in Saccharomyces cerevisiae has been developed. It relies on the ability of two fragments of enhanced green fluorescent protein (EGFP) to reassemble and fluoresce when fused to interacting proteins. Since this fluorescence can be detected in living cells, simultaneous detection and localisation of interacting pairs is possible. DNA sequences encoding N- and C-terminal EGFP fragments flanked by sequences from the genes of interest were transformed into S. cerevisicie JPY5 cells and homologous recombination into the genome verified by PCR. The system was evaluated by testing known interacting proteins: labelling of the phosphofructokinase subunits, Pfk1p and Pfk2p, with N- and C-terminal EGFP fragments, respectively, resulted in green fluorescence in the cytoplasm. The system works in other cellular compartments: labelling of Idh1p and Idh2p, (mitochondrial matrix), Sdh3p and Sdh4p (mitochondrial membrane) and Pap2p and Mtr4p (nucleus) all resulted in fluorescence in the appropriate cellular compartment. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.
Resumo:
Neutrophils are terminally differentiated cells with a short life-span due to constitutive apoptosis. Because of these characteristics, genetic manipulation of neutrophils has been difficult, although it is highly desired given the importance of neutrophils in the immune system. Here we demonstrate that transduction of primary human mature neutrophils with enhanced green fluorescent protein (eGFP)-encoding lentiviral particles results in GFP-containing cells as previously reported. Yet, our data further show that GFP expression in neutrophils upon transduction is largely due to protein transfer, a process called lentiviral pseudotransduction, and not due to bona fide transduction. Thus, inhibition of viral genome integration by the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) or of protein biosynthesis by cycloheximide (CHX) did not abolish GFP levels in transduced neutrophils. Importantly, lentiviral pseudotransduction of the enzyme death-associated protein kinase 2 (DAPK2) into primary human mature neutrophils resulted in increased protein levels, but not enzymatic functionality. Based on our data and previous reports of unspecific viral effects on immune cells following lentiviral transduction, we discourage scientists to use lentiviral transduction methods to manipulate primary mature neutrophils.
Resumo:
PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.
Resumo:
We have identified homologs of a human BMP receptor-associated molecule BRAM1 in Caenorhabditis elegans. One of them, BRA-1, has been found to bind DAF-1, the type I receptor in the DAF-7 transforming growth factor-β pathway through the conserved C-terminal region. As analyzed using a BRA-1∷GFP (green fluorescent protein) fusion gene product, the bra-1 gene is expressed in amphid neurons such as ASK, ASI, and ASG, where daf-1 is also expressed. A loss-of-function mutation in bra-1 exhibits robust suppression of the Daf-c phenotype caused by the DAF-7 pathway mutations. We propose that BRA-1 represents a novel class of receptor-associated molecules that negatively regulate transforming growth factor-β pathways.
Resumo:
BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.
Resumo:
We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals. © 2009 Blackwell Publishing Ltd.
Resumo:
Efficient transformation of barley cv. Schooner was achieved using Agrobacterium delivery, hygromycin or bialaphos selection and embryogenic callus. Using this system, transgenic plants were generated that contained either the green fluorescent protein gene, or transgenes derived from barley yellow dwarf (BYDV) and cereal yellow dwarf (CYDV) viruses. Many of these plants contained 1-3 transgene copies that were inherited in a simple Mendelian manner. Some plants containing BYDV and/or CYDV derived transgenes showed reduced virus symptoms and rates of viral replication when challenged with the appropriate virus. The ability to transform Schooner is a significant advance for the Australian barley industry, as this elite malting variety is, and has for the last 15 years been, the most widely grown barley variety in eastern Australia.
Resumo:
DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.
Resumo:
Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca2+ inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.
Resumo:
Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.
Resumo:
植物与昆虫的互作关系是个长期进化的过程,虫害给农业生产带来巨大损失。本研究以甘蓝型油菜(Brassica napus)为例,研究了不同环境条件和遗传背景下外源基因的表达与效用,同时利用蛋白质组技术,研究了虫害损伤模拟条件下植物可能存在的内源抗性机制。甘蓝型油菜中转入了人工合成的Bt(Bacillus thuringiensis)杀虫基因,能使植物产生抗虫蛋白抵御虫害。我们在湖北湖南两个实验点进行了大田实验,按植株生长发育的4个不同时期从转基因植株的叶片上采样,研究抗虫蛋白在植物体内的表达动态。植株顶部第三片展开叶的Bt毒蛋白浓度在结荚期前随植物生长而不断增加,而在结荚期出现或增或减的现象。采样叶片的可溶性总蛋白浓度含量一直呈增加的趋势,直到结荚以后出现含量的明显降低。同时,收集了转基因油菜与湘油15号在田间自然杂交形成的杂交后代种子用于栽培,用GFP仪检测杂交后代的绿色荧光蛋白(green fluorescent protein),并用聚合酶链式反应(polymerase chain reaction, PCR)检测并确认带有转基因的杂交植株。为了检测带有转基因的杂交后代油菜中Bt毒蛋白的杀虫效率,用对Bt毒蛋白敏感的试虫品系——初孵棉铃虫幼虫(Helicoverpa armigera)进行杀虫活性检测实验。结果表明,携带Bt基因的杂交湘油及其转基因亲本对试虫的体重增长量均产生了负面影响,可以推断在调查取样的植株生长发育阶段,转基因杂交后代与其转基因亲本植株的杀虫效率没有显著差异。转基因植物及其杂交后代中抗虫蛋白的持续表达及田间带有转基因的自播植物的出现会使害虫产生耐受抗性的潜在可能性增加。 相对于人为增加的抗虫基因,植物在长期对抗昆虫的过程中也进化形成了自我防御机制,能够产生特异的抗性蛋白来应对昆虫的取食。本研究用机械损伤模拟害虫取食,对比了油菜受到物理损伤前后可溶性总蛋白的含量变化并试图通过蛋白质组学技术来检测可能发生变化的蛋白质。Bradford定量测定发现,同一植株同一叶片损伤前后可溶性总蛋白含量差异显著,损伤后蛋白表达量显著增高。蛋白质组双向凝胶电泳及其差异分析显示,损伤前后有8个蛋白质点发生明显的上调或下调。选择其中2个差异蛋白点经过MALDI-TOF质谱鉴定,它们分别是Rubisco小亚基前体以及果糖-1,6-二磷酸醛缩酶和粪卟啉-3-氧化酶的混合物,这些蛋白质在其他植物的抗逆研究中也有报道,它们可能在油菜叶片应答机械损伤过程中对维持植物的生理功能也有重要作用。