815 resultados para green coconut shells
Resumo:
UNL - NSBE
Resumo:
Introduction: There are more than 300,000 extractors using the babaçu coconut as a source of income in the States of Maranhão, Pará, Tocantins and Piauí, and this activity is associated with fungal infections. The objective of this study was to examine the occurrence of emergent fungi in the conjunctiva, nails and surface and subcutaneous injuries of female coconut breakers in Esperantinópolis, Maranhão. Additionally, soil samples and palm structures were collected. Methods: The obtained samples were cultured in Petri dishes containing potato-dextrose-agar and chloramphenicol. The etiological agent was confirmed by a direct mycological exam and growth in culture. Results: In total, 150 domiciles were visited, and samples were collected from 80 patients. From the ground, the most frequently isolated fungus was Aspergillus niger (53. 8%). the most frequently detected fungus in babaçu coconut was Aspergillus niger (66.7%). Conjunctival fungal growth occurred in 76.3% of the women. The ocular fungal microbiota consisted of filamentous fungi (80.6%), and yeasts were present in 19.4% of cases. Onychomycosis was diagnosed in 44% (11/25) of the women. Conclusions: The identification of the genera Neosartorya, Rhizopus and Curvularia in onychomycoses shows that emergent filamentous fungi can be isolated. Aspergillus sp., Penicillium sp. and Scedosporium sp. were the predominant genera found in the babaçu coconut. From ocular conjunctiva, Candida spp. were the most prevalent species isolated, and Fusarium sp. was present only in one woman. The nearly permanent exposure of coconut breakers to the external environment and to the soil is most likely the reason for the existence of a mycotic flora and fungal infections, varying according to the individual's practices and occupation.
Resumo:
IntroductionThe larvicidal activity of Solanum lycocarpumagainst Culex quinquefasciatus is unknown.MethodsWe evaluated the larvicidal activity of extracts of the green fruits of Solanum lycocarpum against third and fourth instar larvae of C. quinquefasciatus.ResultsDichloromethane and ethyl acetate fractions showed the greatest larvicidal effect at 200mg/L (83.3% and 86.7%, respectively). The methanol and dichloromethane, ethyl acetate, and hydromethanolic fractions demonstrated larvicidal effects against C. quinquefasciatus, with LC50 values of 126.24, 75.13, 83.15, and 207.05mg/L, respectively.ConclusionsThus, when considering new drugs with larvicidal activity from natural products, S. lycocarpum fruits may be good candidate sources.
Resumo:
Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, manufactured and tested in terms of selectivity for water and oil to produce a W/O/W emulsion. During the development of this work there was one critical challenge: the selective functionalization in closed microfluidic channels. Wet chemical oxidation of PDMS with 1M NaOH, confirmed by FTIR, followed by adsorption of polyelectrolytes - PDADMAC/PSS - confirmed by UV-Vis and AFM results, render the surface of PDMS hydrophilic. UV-Vis spectroscopy also confirmed that this modification did not affect PDMS optical properties, making possible to monitor fluids and droplets. More important, with this approach PDMS remains hydrophilic over time. However, due to equipment constrains selectivity in microchannels was not achieved. Therefore, emulsion studies took place with conventional methods. Several systems were tried, with promising results achieved with CaCO3 in-situ precipitation, without the use of polymers or magnesium. This mineral stabilizes oil droplets in water, but not in air due to incomplete capsule formation.
Resumo:
Implantable devices must exhibit mechanical properties similar to native tissues to promote appropriate cellular behavior and regeneration. Herein, we report a new membrane manufacture method based on the synthesis of polyelectrolyte complexes (PECs) that exhibit saloplasticity, i.e. variable physical-chemistry using salt as a plasticizer. This is a Green Chemistry approach, as PECs generate structures that are stabilized solely by reversible electrostatic interactions, avoiding the use of harmful crosslinkers completely. Furthermore, natural polyelectrolytes - chitosan and alginate - were used. Upon mixing them, membranes were obtained by drying the PECs at 37ºC, yielding compact PECs without resorting to organicsolvents. The plasticizing effect of salt after synthesis was shown by measuring tensile mechanical properties, which were lower when samples were immersed in high ionic strength solutions.Salt was also used during membrane synthesis in different quan- tities (0 M, 0.15 M and 0.5 M in NaCl) yielding structures with no significant differences in morphology and degradation (around 15% after 3 months in lysozyme). However, swelling was higher (about 10x) when synthesized in the presence of salt. In vitro cell studies using L929 fibroblasts showed that cells adhered and proliferated preferentially in membranes fabricated in the presence of salt (i.e. the membranes with lower tensile strength). Structures with physical-chemical properties controlled with precision open a path to tissue engineering strategies depending on fine tuning mechanical properties and cellular adhesion simply by changing ionic strength during membrane manufacture
Resumo:
Marine ecosystem can be considered a rather exploited source of natural substances with enormous bioactive potential. In Mexico macro-algae study remain forgotten for research and economic purposes besides the high amount of this resource along the west and east coast. For that reason the Bioferinery Group of the Autonomous University of Coahuila, have been studying the biorefinery concept in order to recover high value byproducts of Mexican brown macro-algae including polysaccharides and enzymes to be applied in food, pharmaceutical and energy industry. Brown macroalgae are an important source of fucoidan, alginate and laminarin which comprise a complex group of macromolecules with a wide range of important biological properties such as anticoagulant, antioxidant, antitumoral and antiviral and also as rich source of fermentable sugars for enzymes production. Additionally, specific enzymes able to degrade algae matrix (fucosidases, sulfatases, aliginases, etc) are important tools to establish structural characteristics and biological functions of these polysaccharides. The aims of the present work were the integral study of bioprocess for macroalgae biomass exploitation by the use of green technologies as hydrothermal extraction and solid state fermentation in order to produce polysaccharides and enzymes (fucoidan and fucoidan hydrolytic enzymes). This work comprises the use of the different bioprocess phases in order to produce high value products with lower time and wastes.
Resumo:
A Zero waste management is believed to be one of methods to gain sustainability in urban areas. Take advantages of resources as enough as the needs and process it until the last part to be wasted is a contribution to take care the environment for the next generation. Reduce, reuse, and recycle are three simplesactivities which are until nowadays consideredas the back bone of zero waste. Jonggolgreen city is a new urban area in Indonesia with a 100 ha of surface area zoned as education tourism area. It is an independent area with pure natural resources of water, air, and land to be managed and protected. It is planned as green city through zero waste management since2013. In this preliminary period, a monitoring tool is being prepared by applying a Life Cycle Analysis (LCA) for urban areas [1]. This paper will present an explanatory assessment ofthe zero waste management for Jonggolgreen city. The existing situation will be examined through LCA and afterwards,the new program and the proposed green design to gain the next level of zero waste will be discussed. The purpose is to track the persistence of the commitment and the perception of the necessary innovationsin order to achieve the ideal behavior level of LCA.
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
This paper provides an overview of properties and application of natural fibre composites. Natural fibre market, merits and demerits, surface treatment techniques, properties of some recently developed natural fibre composites and applications have been discussed.
Resumo:
Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.
Resumo:
Let V be an infinite-dimensional vector space and for every infinite cardinal n such that n≤dimV, let AE(V,n) denote the semigroup of all linear transformations of V whose defect is less than n. In 2009, Mendes-Gonçalves and Sullivan studied the ideal structure of AE(V,n). Here, we consider a similarly-defined semigroup AE(X,q) of transformations defined on an infinite set X. Quite surprisingly, the results obtained for sets differ substantially from the results obtained in the linear setting.
Resumo:
In search to increase the offer of liquid, clean, renewable and sustainable energy in the world energy matrix, the use of lignocellulosic materials (LCMs) for bioethanol production arises as a valuable alternative. The objective of this work was to analyze and compare the performance of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the production of bioethanol from coconut fibre mature (CFM) using different strategies: simultaneous saccharification and fermentation (SSF) and semi-simultaneous saccharification and fermentation (SSSF). The CFM was pretreated by hydrothermal pretreatment catalyzed with sodium hydroxide (HPCSH). The pretreated CFM was characterized by X-ray diffractometry and SEM, and the lignin recovered in the liquid phase by FTIR and TGA. After the HPCSH pretreatment (2.5% (v/v) sodium hydroxide at 180 °C for 30 min), the cellulose content was 56.44%, while the hemicellulose and lignin were reduced 69.04% and 89.13%, respectively. Following pretreatment, the obtained cellulosic fraction was submitted to SSF and SSSF. Pichia stipitis allowed for the highest ethanol yield 90.18% in SSSF, 91.17% and 91.03% were obtained with Saccharomyces cerevisiae and Zymomonas mobilis, respectively. It may be concluded that the selection of the most efficient microorganism for the obtention of high bioethanol production yields from cellulose pretreated by HPCSH depends on the operational strategy used and this pretreatment is an interesting alternative for add value of coconut fibre mature compounds (lignin, phenolics) being in accordance with the biorefinery concept.
Resumo:
Este proyecto estudiará las estrategias de vida implementadas por familias productoras fruti hortícolas que viven en Colonia Tirolesa y Chacra de la Merced, lugares que forman parte del cinturón verde de la Ciudad de Córdoba; y su relación con los procesos de diferenciación social, asociados a cambios productivos, económicos, culturales y sociales que están condicionados por el modelo de expansión capitalista. A partir del análisis del capital económico, social, cultural y simbólico se identificará en un contexto rural las motivaciones, logicas productivas y conocimientos agrícolas que incidieron en las decisiones asumidas ante problematicas emergentes, tales como limitaciones para adquirir nuevos paquetes tecnológicos, el impacto ambiental causados por la no conservación y sustentabilidad de los recursos y las consecuencias sociales vinculadas a los laxos de familia, el trabajo y la calidad de vida.Se plantean las siguientes hipótesis: 1)Algunas familias productoras implementaron estrategias de vida que se relacionan con criterios de autosustentabilidad, conocimientos agrícolas tradicionales y pautas culturales.2) Los nuevos espacios productivos no son compatibles con agroecosistemas sustentables. 3) Las nuevas tecnologías causaron impactos en la actividad productiva e incidieron en la economía, calidad de vida y vinculos familiares. 4)El modo de producción familiar fue reemplazado por el modo de producción capitalista lo que incidió en la producción agrícola y en la conservación de los recursos.El objetivo principal es descubrir las estrategias de vida implementadas por un grupo de familias, trabajadoras fruti hortícolas, en respuesta a las transformaciones productivas, tecnológicas y socio económicas impuestas por el modelo de acumulación vigente.Para ello se caracterizará los ambitos productivos de trabajo a campo, identificando la disponibilidad de capital y los conocimientos técnicos y de manejo. También se analizarán las pautas y valores culturales, el impacto de las nuevas tecnologías y la incidencia social, vinculada a los cambios en los modos de producción.El abordaje será de tipo cualitativo, recavando información para elaborar una descripción detallada de las estrategias de vida adoptadas a partir de la década de los noventa. Se tomará como unidad de análisis a las familias que trabajaron o trabajan en la producción de hortalizas o frutales. Se realizarán combinaciones entre procedimientos Tipológicos a Priori; Históricos Comparativos y casos Unitarios. Se analizará las normativas vigentes en relación al uso y calidad del agua y del suelo; también imágenes satelitales para analizar los procesos de cambio en el uso del territorio y del recurso suelo. Se pretende realizar un aporte relacionado con el conocimiento de: la sustentabilidad de los sistemas productivos, la pobreza y los modos de vida de los productores fruti hortícolas que persistencia en ambientes degradados; en una franja intermedia entre el campo y la ciudad.
Resumo:
This thesis presents the research and development of sustainable design guidelines for the furniture and wood products industry, suitable for sustainably enhancing design, manufacturing and associated activities. This sustainable guideline is based on secondary research conducted on subject areas such as ‘eco’ design, ‘green’ branding and ‘green’ consumerism, as well as an examination of existing certifications and sustainable tools techniques and methodologies, national and international drivers for sustainable development and an overview of sustainability in the Irish furniture manufacturing context. The guideline was further developed through primary research. This consisted of a focus group attended by leading Irish designers, manufacturers and academics in the area of furniture and wood products. This group explored the question of ‘green branding’ saturation in the market and the viability of investing in sustainability just yet. Participants stated that they felt the market for ‘green’ products is evolving very slowly and that there is no metric or legal framework present to audit whether or not companies are producing products that really embody sustainability. All the participants believed that developing and introducing a new certification process to incorporate a sustainable design process was a viable and necessary solution to protecting Irish furniture and wood manufacturers going forward. For the purposes of the case study, the author investigated a ‘sustainable’ design process for Team woodcraft, Ltd., through the design and development of a ‘sustainable’ children’s furniture range. The case study followed a typical design and development process; detailing customer design specifications, concept development and refinement and cumulating in final prototype, as well as associated engineering drawings. Based on this primary and secondary research, seven fundamental core principles for this sustainable guideline have been identified by the author. The author then used these core principles to expand into guidelines for the basis of proposed new Irish sustainable design guidelines for the furniture and wood products industry, the concept of which the author has named ‘Green Dot’. The author suggests that the ‘Green Dot’ brand or logo could be used to market an umbrella network of Irish furniture designers and manufactures who implement the recommended sustainable techniques.